An improved result on bounded/periodic solutions for some scalar delay differential equations

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED
Shangbing Ai
{"title":"An improved result on bounded/periodic solutions for some scalar delay differential equations","authors":"Shangbing Ai","doi":"10.3934/dcdss.2023205","DOIUrl":null,"url":null,"abstract":"In [2] we established an existence theorem on bounded/periodic solutions for a class of scalar delay differential equations of the form$ \\begin{equation} \\frac{du}{dt} = f(t,u(t), u(t-r_1), \\cdots, u(t-r_n)), \\qquad t \\in \\mathbb R, \\;\\;\\;\\;\\;(1)\\end{equation} $under the assumptions that the constant delays $ r_k>0 $, $ k = 1, \\cdots, n $, are 'small' and $ f $ satisfies a one-sided Lipschitz condition on the variables $ u(t), u(t-r_1), \\cdots, u(t-r_n) $. In this paper, we improve this result in the case that $ f $ is strictly increasing in some variables $ u(t-r_k) $ and obtain a new result that allows larger values of $ r_k $ with which the equation (1) still has a bounded/periodic solution. We illustrate this result via some population models.","PeriodicalId":48838,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series S","volume":"29 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2023205","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In [2] we established an existence theorem on bounded/periodic solutions for a class of scalar delay differential equations of the form$ \begin{equation} \frac{du}{dt} = f(t,u(t), u(t-r_1), \cdots, u(t-r_n)), \qquad t \in \mathbb R, \;\;\;\;\;(1)\end{equation} $under the assumptions that the constant delays $ r_k>0 $, $ k = 1, \cdots, n $, are 'small' and $ f $ satisfies a one-sided Lipschitz condition on the variables $ u(t), u(t-r_1), \cdots, u(t-r_n) $. In this paper, we improve this result in the case that $ f $ is strictly increasing in some variables $ u(t-r_k) $ and obtain a new result that allows larger values of $ r_k $ with which the equation (1) still has a bounded/periodic solution. We illustrate this result via some population models.
一类标量时滞微分方程有界/周期解的改进结果
在[2]中,我们建立了一类形式为$ \begin{equation} \frac{du}{dt} = f(t,u(t), u(t-r_1), \cdots, u(t-r_n)), \qquad t \in \mathbb R, \;\;\;\;\;(1)\end{equation} $的标量延迟微分方程的有界/周期解的存在性定理,假设常数延迟$ r_k>0 $, $ k = 1, \cdots, n $是“小”的,并且$ f $满足变量$ u(t), u(t-r_1), \cdots, u(t-r_n) $上的单侧Lipschitz条件。在本文中,我们改进了$ f $在某些变量$ u(t-r_k) $中是严格递增的情况下的结果,得到了一个新的结果,允许更大的$ r_k $值,使得方程(1)仍然有有界/周期解。我们通过一些人口模型来说明这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
5.60%
发文量
177
期刊介绍: Series S of Discrete and Continuous Dynamical Systems only publishes theme issues. Each issue is devoted to a specific area of the mathematical, physical and engineering sciences. This area will define a research frontier that is advancing rapidly, often bridging mathematics and sciences. DCDS-S is essential reading for mathematicians, physicists, engineers and other physical scientists. The journal is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信