Fractional KPZ system with nonlocal "gradient terms"

IF 1.1 3区 数学 Q1 MATHEMATICS
Abdelbadie Younes, Kheireddine Biroud, Fethi Mahmoudi, Boumediene Abdellaoui
{"title":"Fractional KPZ system with nonlocal \"gradient terms\"","authors":"Abdelbadie Younes, Kheireddine Biroud, Fethi Mahmoudi, Boumediene Abdellaoui","doi":"10.3934/dcds.2023106","DOIUrl":null,"url":null,"abstract":"In the present work we study the existence and non-existence of nonnegative solutions to a class of deterministic KPZ system with nonlocal gradient term. More precisely we will consider the system$ \\begin{equation*} \\left\\{ \\begin{array}{rcll} (-\\Delta)^{s} u & = &|\\mathbb{D}_{s} v|^q + \\rho f\\,, & \\quad {\\rm{in }}\\; \\Omega,\\\\ (-\\Delta)^{s} v & = & |\\mathbb{D}_{s} u|^p + \\tau g\\,, & \\quad {\\rm{in }}\\; \\Omega,\\\\ u = v& = & 0 &\\quad {\\text{in }} \\mathbb{R}^N \\setminus \\Omega \\end{array} \\right. \\end{equation*} $where $ \\Omega $ is a bounded regular ($ C^2 $) domain of $ \\mathbb{R}^N $ and $ p, q\\ge 1 $. $ f,g $ are nonnegative measurable functions satisfying some additional hypotheses and $ \\rho, \\tau \\ge 0 $.Here $ \\mathbb{D}_{s} $ represents a nonlocal 'gradient term' that will be specified below. In some particular cases, we are able to show the optimality of the condition imposed on the data $ f,g $ and $ \\rho,\\tau $.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"28 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023106","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work we study the existence and non-existence of nonnegative solutions to a class of deterministic KPZ system with nonlocal gradient term. More precisely we will consider the system$ \begin{equation*} \left\{ \begin{array}{rcll} (-\Delta)^{s} u & = &|\mathbb{D}_{s} v|^q + \rho f\,, & \quad {\rm{in }}\; \Omega,\\ (-\Delta)^{s} v & = & |\mathbb{D}_{s} u|^p + \tau g\,, & \quad {\rm{in }}\; \Omega,\\ u = v& = & 0 &\quad {\text{in }} \mathbb{R}^N \setminus \Omega \end{array} \right. \end{equation*} $where $ \Omega $ is a bounded regular ($ C^2 $) domain of $ \mathbb{R}^N $ and $ p, q\ge 1 $. $ f,g $ are nonnegative measurable functions satisfying some additional hypotheses and $ \rho, \tau \ge 0 $.Here $ \mathbb{D}_{s} $ represents a nonlocal 'gradient term' that will be specified below. In some particular cases, we are able to show the optimality of the condition imposed on the data $ f,g $ and $ \rho,\tau $.
具有非局部“梯度项”的分数阶KPZ系统
本文研究了一类具有非局部梯度项的确定性KPZ系统的非负解的存在性和不存在性。更准确地说,我们将考虑系统$ \begin{equation*} \left\{ \begin{array}{rcll} (-\Delta)^{s} u & = &|\mathbb{D}_{s} v|^q + \rho f\,, & \quad {\rm{in }}\; \Omega,\\ (-\Delta)^{s} v & = & |\mathbb{D}_{s} u|^p + \tau g\,, & \quad {\rm{in }}\; \Omega,\\ u = v& = & 0 &\quad {\text{in }} \mathbb{R}^N \setminus \Omega \end{array} \right. \end{equation*} $,其中$ \Omega $是$ \mathbb{R}^N $和$ p, q\ge 1 $的有界正则($ C^2 $)域。$ f,g $是满足一些附加假设和$ \rho, \tau \ge 0 $的非负可测量函数。这里$ \mathbb{D}_{s} $表示将在下面指定的非局部“梯度项”。在某些特殊情况下,我们能够显示施加在数据$ f,g $和$ \rho,\tau $上的条件的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信