{"title":"Numerical study of influence of mould width on freestanding adjustable combination electromagnetic brake in continuous casting mould","authors":"Zhuang Li, Lintao Zhang, Engang Wang","doi":"10.1051/metal/2023066","DOIUrl":null,"url":null,"abstract":"A mathematical model was developed to describe the behavior of liquid steel flow and the steel/slag interface at a constant casting throughput in moulds of different widths. The impact of mould width (MW) on the liquid steel flow and the steel/slag interface was analyzed. Further it was examined whether a freestanding adjustable combination electromagnetic brake (FAC-EMBr) was conducive to controlling and improving the liquid steel flow. The results indicate that increasing MW decreased impact strength of the jet, upward backflow, and surface velocity––this was beneficial for reducing the meniscus height. Adjustment of the current intensity would enable the control of the behaviour of the liquid steel flow and meniscus, as well as reduce the dependence on matching the electromagnetic parameters and process parameters. This simplifies the operational process. As the MW increased to 1600 mm, an excessive input current of the vertical pole ( I V = 250 A) significantly decreased the upward backflow velocity; this was not conducive to melting the mould powder.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/metal/2023066","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A mathematical model was developed to describe the behavior of liquid steel flow and the steel/slag interface at a constant casting throughput in moulds of different widths. The impact of mould width (MW) on the liquid steel flow and the steel/slag interface was analyzed. Further it was examined whether a freestanding adjustable combination electromagnetic brake (FAC-EMBr) was conducive to controlling and improving the liquid steel flow. The results indicate that increasing MW decreased impact strength of the jet, upward backflow, and surface velocity––this was beneficial for reducing the meniscus height. Adjustment of the current intensity would enable the control of the behaviour of the liquid steel flow and meniscus, as well as reduce the dependence on matching the electromagnetic parameters and process parameters. This simplifies the operational process. As the MW increased to 1600 mm, an excessive input current of the vertical pole ( I V = 250 A) significantly decreased the upward backflow velocity; this was not conducive to melting the mould powder.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.