{"title":"Edge Learning for 6G-Enabled Internet of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses","authors":"Mohamed Amine Ferrag;Othmane Friha;Burak Kantarci;Norbert Tihanyi;Lucas Cordeiro;Merouane Debbah;Djallel Hamouda;Muna Al-Hawawreh;Kim-Kwang Raymond Choo","doi":"10.1109/COMST.2023.3317242","DOIUrl":null,"url":null,"abstract":"The deployment of the fifth-generation (5G) wireless networks in Internet of Everything (IoE) applications and future networks (e.g., sixth-generation (6G) networks) has raised a number of operational challenges and limitations, for example in terms of security and privacy. Edge learning is an emerging approach to training models across distributed clients while ensuring data privacy. Such an approach when integrated in future network infrastructures (e.g., 6G) can potentially solve challenging problems such as resource management and behavior prediction. However, edge learning (including distributed deep learning) are known to be susceptible to tampering and manipulation. This survey article provides a holistic review of the extant literature focusing on edge learning-related vulnerabilities and defenses for 6G-enabled Internet of Things (IoT) systems. Existing machine learning approaches for 6G–IoT security and machine learning-associated threats are broadly categorized based on learning modes, namely: centralized, federated, and distributed. Then, we provide an overview of enabling emerging technologies for 6G–IoT intelligence. We also provide a holistic survey of existing research on attacks against machine learning and classify threat models into eight categories, namely: backdoor attacks, adversarial examples, combined attacks, poisoning attacks, Sybil attacks, byzantine attacks, inference attacks, and dropping attacks. In addition, we provide a comprehensive and detailed taxonomy and a comparative summary of the state-of-the-art defense methods against edge learning-related vulnerabilities. Finally, as new attacks and defense technologies are realized, new research and future overall prospects for 6G-enabled IoT are discussed.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"25 4","pages":"2654-2713"},"PeriodicalIF":34.4000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10255264/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The deployment of the fifth-generation (5G) wireless networks in Internet of Everything (IoE) applications and future networks (e.g., sixth-generation (6G) networks) has raised a number of operational challenges and limitations, for example in terms of security and privacy. Edge learning is an emerging approach to training models across distributed clients while ensuring data privacy. Such an approach when integrated in future network infrastructures (e.g., 6G) can potentially solve challenging problems such as resource management and behavior prediction. However, edge learning (including distributed deep learning) are known to be susceptible to tampering and manipulation. This survey article provides a holistic review of the extant literature focusing on edge learning-related vulnerabilities and defenses for 6G-enabled Internet of Things (IoT) systems. Existing machine learning approaches for 6G–IoT security and machine learning-associated threats are broadly categorized based on learning modes, namely: centralized, federated, and distributed. Then, we provide an overview of enabling emerging technologies for 6G–IoT intelligence. We also provide a holistic survey of existing research on attacks against machine learning and classify threat models into eight categories, namely: backdoor attacks, adversarial examples, combined attacks, poisoning attacks, Sybil attacks, byzantine attacks, inference attacks, and dropping attacks. In addition, we provide a comprehensive and detailed taxonomy and a comparative summary of the state-of-the-art defense methods against edge learning-related vulnerabilities. Finally, as new attacks and defense technologies are realized, new research and future overall prospects for 6G-enabled IoT are discussed.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.