Factorial Designs, Model Selection, and (Incorrect) Inference in Randomized Experiments

Karthik Muralidharan, Mauricio Romero, Kaspar Wüthrich
{"title":"Factorial Designs, Model Selection, and (Incorrect) Inference in Randomized Experiments","authors":"Karthik Muralidharan, Mauricio Romero, Kaspar Wüthrich","doi":"10.1162/rest_a_01317","DOIUrl":null,"url":null,"abstract":"Abstract Factorial designs are widely used to study multiple treatments in one experiment. While t-tests using a fully-saturated “long” model provide valid inferences, “short” model t-tests (that ignore interactions) yield higher power if interactions are zero, but incorrect inferences otherwise. Of 27 factorial experiments published in top-5 journals (2007–2017), 19 use the short model. After including interactions, over half of their results lose significance. Based on recent econometric advances, we show that power improvements over the long model are possible. We provide practical guidance for the design of new experiments and the analysis of completed experiments.","PeriodicalId":275408,"journal":{"name":"The Review of Economics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Review of Economics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/rest_a_01317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Factorial designs are widely used to study multiple treatments in one experiment. While t-tests using a fully-saturated “long” model provide valid inferences, “short” model t-tests (that ignore interactions) yield higher power if interactions are zero, but incorrect inferences otherwise. Of 27 factorial experiments published in top-5 journals (2007–2017), 19 use the short model. After including interactions, over half of their results lose significance. Based on recent econometric advances, we show that power improvements over the long model are possible. We provide practical guidance for the design of new experiments and the analysis of completed experiments.
随机实验中的析因设计、模型选择和(错误)推断
析因设计被广泛用于在一个实验中研究多个处理。虽然使用完全饱和的“长”模型的t检验提供了有效的推断,但如果交互为零,“短”模型t检验(忽略交互)会产生更高的功率,否则会产生错误的推断。在排名前5的期刊(2007-2017)上发表的27个析因实验中,有19个使用了短模型。在包括互动之后,超过一半的结果失去了意义。基于最近的计量经济学进展,我们表明,长期模型的功率改进是可能的。我们为新实验的设计和已完成实验的分析提供实用的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信