Landau Legendre Wavelet Galerkin Method Applied to Study Two Phase Moving Boundary Problem of Heat Transfer in Finite Region

IF 1.3 Q3 THERMODYNAMICS
Subrahamanyam Upadhyay, Priti Sharma, Harpreet Kaur, Kavindra Nath Rai, Anand Chauhan
{"title":"Landau Legendre Wavelet Galerkin Method Applied to Study Two Phase Moving Boundary Problem of Heat Transfer in Finite Region","authors":"Subrahamanyam Upadhyay, Priti Sharma, Harpreet Kaur, Kavindra Nath Rai, Anand Chauhan","doi":"10.1615/computthermalscien.2023046663","DOIUrl":null,"url":null,"abstract":"In this paper, we developed a mathematical model of solidification where specific heat and thermal conductivity are temperature dependent. This model is a two-phase MBP of heat transfer in finite region and represents as MBP of system of parabolic non-linear second order PDEs. We developed a Landau Legendre Wavelet Galerkin Method for finding the solution of the problem. The MBP of a system of PDEs is transformed into a variable boundary value problem of non-linear ODEs by the use of dimensionless variables and the Landau transform. The problem is converted into system of algebraic equations with the application of Legendre Wavelet Galerkin Method. In particular case, we compared present solution with Laplace transform solution and found approximately same. The whole investigation has been done in dimensionless form. When the specific heat and thermal conductivity exponentially varies in temperatures, the effect of dimensionless parameters: Thermal diffusivity $(\\alpha_{12})$, ratio of Thermal conductivity $(k_{12})$, dimensionless temperature $(\\theta_{f})$, Fourier number $(F_0)$,Stefan number $(Ste)$ and ratio of densities $\\left(\\rho_{1}/\\rho_{2} \\right)$ are discussed in detail.","PeriodicalId":45052,"journal":{"name":"Computational Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/computthermalscien.2023046663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we developed a mathematical model of solidification where specific heat and thermal conductivity are temperature dependent. This model is a two-phase MBP of heat transfer in finite region and represents as MBP of system of parabolic non-linear second order PDEs. We developed a Landau Legendre Wavelet Galerkin Method for finding the solution of the problem. The MBP of a system of PDEs is transformed into a variable boundary value problem of non-linear ODEs by the use of dimensionless variables and the Landau transform. The problem is converted into system of algebraic equations with the application of Legendre Wavelet Galerkin Method. In particular case, we compared present solution with Laplace transform solution and found approximately same. The whole investigation has been done in dimensionless form. When the specific heat and thermal conductivity exponentially varies in temperatures, the effect of dimensionless parameters: Thermal diffusivity $(\alpha_{12})$, ratio of Thermal conductivity $(k_{12})$, dimensionless temperature $(\theta_{f})$, Fourier number $(F_0)$,Stefan number $(Ste)$ and ratio of densities $\left(\rho_{1}/\rho_{2} \right)$ are discussed in detail.
应用朗道-勒让德小波伽辽金方法研究有限区域内传热的两相移动边界问题
在本文中,我们开发了一个凝固的数学模型,其中比热和导热系数取决于温度。该模型是有限区域内传热的两相MBP,表示为抛物型非线性二阶偏微分方程系统的MBP。我们提出了一种朗道-勒让德小波伽辽金方法来求解这一问题。利用无量纲变量和朗道变换,将偏微分方程系统的MBP问题转化为非线性偏微分方程的变边值问题。应用让让德小波伽辽金方法将问题转化为代数方程组。在特殊情况下,我们将本解与拉普拉斯变换解进行比较,得到近似相同的结果。整个调查是以无量纲的形式进行的。当比热和导热系数随温度呈指数变化时,详细讨论了无量纲参数:热扩散系数$(\alpha_{12})$、导热系数$(k_{12})$、无量纲温度$(\theta_{f})$、傅里叶数$(F_0)$、斯蒂芬数$(Ste)$和密度比$\left(\rho_{1}/\rho_{2} \right)$的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
6.70%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信