{"title":"Correctness and regularization of stochastic problems","authors":"Irina V. Melnikova, Vadim A. Bovkun","doi":"10.1515/jiip-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract The paper is devoted to the regularization of ill-posed stochastic Cauchy problems in Hilbert spaces: (0.1) <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mi>d</m:mi> <m:mo></m:mo> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:mi>A</m:mi> <m:mo></m:mo> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mi>d</m:mi> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>B</m:mi> <m:mo></m:mo> <m:mi>d</m:mi> <m:mo></m:mo> <m:mi>W</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\"22.5pt\">,</m:mo> <m:mrow> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mi>ξ</m:mi> </m:mrow> </m:mrow> </m:mrow> <m:mo>.</m:mo> </m:mrow> </m:math> du(t)=Au(t)dt+BdW(t),\\quad t>0,\\qquad u(0)=\\xi. The need for regularization is connected with the fact that in the general case the operator A is not supposed to generate a strongly continuous semigroup and with the divergence of the series defining the infinite-dimensional Wiener process <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mi>W</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> {\\{W(t):t\\geq 0\\}} . The construction of regularizing operators uses the technique of Dunford–Schwartz operators, regularized semigroups, generalized Fourier transform and infinite-dimensional Q -Wiener processes.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"39 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The paper is devoted to the regularization of ill-posed stochastic Cauchy problems in Hilbert spaces: (0.1) du(t)=Au(t)dt+BdW(t),t>0,u(0)=ξ. du(t)=Au(t)dt+BdW(t),\quad t>0,\qquad u(0)=\xi. The need for regularization is connected with the fact that in the general case the operator A is not supposed to generate a strongly continuous semigroup and with the divergence of the series defining the infinite-dimensional Wiener process {W(t):t≥0} {\{W(t):t\geq 0\}} . The construction of regularizing operators uses the technique of Dunford–Schwartz operators, regularized semigroups, generalized Fourier transform and infinite-dimensional Q -Wiener processes.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography