{"title":"The commuting conjugacy class graphs of finite groups with a given property","authors":"Mehdi Rezaei, Zeinab Foruzanfar","doi":"10.1515/gmj-2023-2069","DOIUrl":null,"url":null,"abstract":"Abstract Let G be a finite non-abelian group. The commuting conjugacy class graph <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> {\\Gamma(G)} is defined as a graph whose vertices are non-central conjugacy classes of G and two distinct vertices X and Y in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> {\\Gamma(G)} are connected by an edge if there exist elements <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:mi>X</m:mi> </m:mrow> </m:math> {x\\in X} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>y</m:mi> <m:mo>∈</m:mo> <m:mi>Y</m:mi> </m:mrow> </m:math> {y\\in Y} such that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> </m:mrow> </m:math> {xy=yx} . In this paper, the structure of the commuting conjugacy class graph of group G with the property that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mfrac> <m:mi>G</m:mi> <m:mrow> <m:mi>Z</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mfrac> </m:math> {\\frac{G}{Z(G)}} is isomorphic to a Frobenius group of order pq or <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>p</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo></m:mo> <m:mi>q</m:mi> </m:mrow> </m:math> {p^{2}q} , is determined.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let G be a finite non-abelian group. The commuting conjugacy class graph Γ(G) {\Gamma(G)} is defined as a graph whose vertices are non-central conjugacy classes of G and two distinct vertices X and Y in Γ(G) {\Gamma(G)} are connected by an edge if there exist elements x∈X {x\in X} and y∈Y {y\in Y} such that xy=yx {xy=yx} . In this paper, the structure of the commuting conjugacy class graph of group G with the property that GZ(G) {\frac{G}{Z(G)}} is isomorphic to a Frobenius group of order pq or p2q {p^{2}q} , is determined.