{"title":"An emotion recognition model based on long short-term memory networks and EEG signals and its application in parametric design","authors":"Minning Zhou, Lin Zhou, Mengjiao Pan, Xiang Chen","doi":"10.1142/s0219519423400961","DOIUrl":null,"url":null,"abstract":"One of the design objectives of a product is to create a positive emotional user experience. Through careful design, the product can evoke emotional resonance in users and stimulate their pleasure and satisfaction. Therefore, emotion recognition is crucial for parameterized product design. Considering that emotion recognition based on electroencephalogram (EEG) signals is more objective and accurate compared to methods such as text and surveys, this paper proposes an emotion analysis model based on long short-term memory (LSTM) and EEG and applies it to parameterized design. The main contributions of this paper are as follows. (1) Constructing a high-accuracy emotion recognition model. First, EEG data reflecting the characteristic patterns of brain activities in different emotional states are collected through EEG electrodes. Then, the EEG data are input into the LSTM network for training, enabling it to learn and capture the features associated with emotional states. During the training process, the model learns to extract crucial emotional features from the EEG data for emotion state recognition. This model can automatically learn emotional features, handle long-term dependencies and provide a more accurate and reliable solution for emotion recognition tasks. (2) Creating an EEG dataset specifically for evaluating emotions related to a product and using the trained emotion recognition model to classify this dataset, obtaining emotion classification results. The emotion classification results can be used to determine which parameter designs in product development need to be retained or discarded. These parameter designs can involve aspects such as user experience, functionality, aesthetics, usability and user-friendliness. Decisions can be made based on the emotion classification results to improve the quality and user satisfaction of the product.","PeriodicalId":50135,"journal":{"name":"Journal of Mechanics in Medicine and Biology","volume":"19 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219519423400961","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
One of the design objectives of a product is to create a positive emotional user experience. Through careful design, the product can evoke emotional resonance in users and stimulate their pleasure and satisfaction. Therefore, emotion recognition is crucial for parameterized product design. Considering that emotion recognition based on electroencephalogram (EEG) signals is more objective and accurate compared to methods such as text and surveys, this paper proposes an emotion analysis model based on long short-term memory (LSTM) and EEG and applies it to parameterized design. The main contributions of this paper are as follows. (1) Constructing a high-accuracy emotion recognition model. First, EEG data reflecting the characteristic patterns of brain activities in different emotional states are collected through EEG electrodes. Then, the EEG data are input into the LSTM network for training, enabling it to learn and capture the features associated with emotional states. During the training process, the model learns to extract crucial emotional features from the EEG data for emotion state recognition. This model can automatically learn emotional features, handle long-term dependencies and provide a more accurate and reliable solution for emotion recognition tasks. (2) Creating an EEG dataset specifically for evaluating emotions related to a product and using the trained emotion recognition model to classify this dataset, obtaining emotion classification results. The emotion classification results can be used to determine which parameter designs in product development need to be retained or discarded. These parameter designs can involve aspects such as user experience, functionality, aesthetics, usability and user-friendliness. Decisions can be made based on the emotion classification results to improve the quality and user satisfaction of the product.
期刊介绍:
This journal has as its objective the publication and dissemination of original research (even for "revolutionary concepts that contrast with existing theories" & "hypothesis") in all fields of engineering-mechanics that includes mechanisms, processes, bio-sensors and bio-devices in medicine, biology and healthcare. The journal publishes original papers in English which contribute to an understanding of biomedical engineering and science at a nano- to macro-scale or an improvement of the methods and techniques of medical, biological and clinical treatment by the application of advanced high technology.
Journal''s Research Scopes/Topics Covered (but not limited to):
Artificial Organs, Biomechanics of Organs.
Biofluid Mechanics, Biorheology, Blood Flow Measurement Techniques, Microcirculation, Hemodynamics.
Bioheat Transfer and Mass Transport, Nano Heat Transfer.
Biomaterials.
Biomechanics & Modeling of Cell and Molecular.
Biomedical Instrumentation and BioSensors that implicate ''human mechanics'' in details.
Biomedical Signal Processing Techniques that implicate ''human mechanics'' in details.
Bio-Microelectromechanical Systems, Microfluidics.
Bio-Nanotechnology and Clinical Application.
Bird and Insect Aerodynamics.
Cardiovascular/Cardiac mechanics.
Cardiovascular Systems Physiology/Engineering.
Cellular and Tissue Mechanics/Engineering.
Computational Biomechanics/Physiological Modelling, Systems Physiology.
Clinical Biomechanics.
Hearing Mechanics.
Human Movement and Animal Locomotion.
Implant Design and Mechanics.
Mathematical modeling.
Mechanobiology of Diseases.
Mechanics of Medical Robotics.
Muscle/Neuromuscular/Musculoskeletal Mechanics and Engineering.
Neural- & Neuro-Behavioral Engineering.
Orthopedic Biomechanics.
Reproductive and Urogynecological Mechanics.
Respiratory System Engineering...