{"title":"Finiteness theorems on elliptical billiards and a variant of the dynamical Mordell–Lang conjecture","authors":"Pietro Corvaja, Umberto Zannier","doi":"10.1112/plms.12561","DOIUrl":null,"url":null,"abstract":"Abstract We offer some theorems, mainly finiteness results, for certain patterns in elliptical billiards, related to periodic trajectories; these seem to be the first finiteness results in this context. For instance, if two players hit a ball at a given position and with directions forming a fixed angle in , there are only finitely many directions for both trajectories being periodic. Another instance is the finiteness of the billiard shots which send a given ball into another one so that this falls eventually in a hole. These results (which are shown not to hold for general billiards) have their origin in ‘relative’ cases of the Manin–Mumford conjecture and constitute instances of how arithmetical content may affect chaotic behaviour (in billiards). We shall also interpret the statements through a variant of the dynamical Mordell–Lang conjecture. In turn, this variant embraces cases, which, somewhat surprisingly, sometimes can be treated (only) by completely different methods compared to the former ones; here we shall offer an explicit example related to diophantine equations in algebraic tori.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"48 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/plms.12561","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract We offer some theorems, mainly finiteness results, for certain patterns in elliptical billiards, related to periodic trajectories; these seem to be the first finiteness results in this context. For instance, if two players hit a ball at a given position and with directions forming a fixed angle in , there are only finitely many directions for both trajectories being periodic. Another instance is the finiteness of the billiard shots which send a given ball into another one so that this falls eventually in a hole. These results (which are shown not to hold for general billiards) have their origin in ‘relative’ cases of the Manin–Mumford conjecture and constitute instances of how arithmetical content may affect chaotic behaviour (in billiards). We shall also interpret the statements through a variant of the dynamical Mordell–Lang conjecture. In turn, this variant embraces cases, which, somewhat surprisingly, sometimes can be treated (only) by completely different methods compared to the former ones; here we shall offer an explicit example related to diophantine equations in algebraic tori.
期刊介绍:
The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers.
The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.