An approach to power system harmonic analysis based on triple-line interpolation discrete Fourier transform

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ling Liu, Jinsong Zhang
{"title":"An approach to power system harmonic analysis based on triple-line interpolation discrete Fourier transform","authors":"Ling Liu, Jinsong Zhang","doi":"10.24425/aee.2022.141670","DOIUrl":null,"url":null,"abstract":": The discrete Fourier transform (DFT) is a principal method for power system harmonic analysis. The fundamental frequency of the power system increases or decreases following load changes during normal operation. It is difficult to achieve synchronous sampling and integer period truncation in power harmonic analysis. The resulting spectrum leakage affects the accuracy of the measurement results. For this reason, a windowed interpolation DFT method for power system harmonic analysis to reduce errors was presented in this paper. First, the frequency domain expression of the windowed signal Fourier transform is analyzed. Then, the magnitude of the three discrete spectrum lines near the harmonic frequency point is used to determine the accurate position of the harmonic spectrum. Then, the calculation of the amplitude, frequency, and phase of harmonics is presented. The triple-line interpolation DFT can improve the accuracy of electrical harmonic analysis. Based on the algorithm, the practical rectification formulas were obtained by using the polynomial approximation method. The simulation results show that the fast attenuation of window function sidelobe is the key to reduce the error. The triple-line interpolation DFT based on Hanning, Blackman, Nuttall 3-Term windows has higher calculation accuracy, which can meet the requirements of electrical harmonic analysis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aee.2022.141670","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

: The discrete Fourier transform (DFT) is a principal method for power system harmonic analysis. The fundamental frequency of the power system increases or decreases following load changes during normal operation. It is difficult to achieve synchronous sampling and integer period truncation in power harmonic analysis. The resulting spectrum leakage affects the accuracy of the measurement results. For this reason, a windowed interpolation DFT method for power system harmonic analysis to reduce errors was presented in this paper. First, the frequency domain expression of the windowed signal Fourier transform is analyzed. Then, the magnitude of the three discrete spectrum lines near the harmonic frequency point is used to determine the accurate position of the harmonic spectrum. Then, the calculation of the amplitude, frequency, and phase of harmonics is presented. The triple-line interpolation DFT can improve the accuracy of electrical harmonic analysis. Based on the algorithm, the practical rectification formulas were obtained by using the polynomial approximation method. The simulation results show that the fast attenuation of window function sidelobe is the key to reduce the error. The triple-line interpolation DFT based on Hanning, Blackman, Nuttall 3-Term windows has higher calculation accuracy, which can meet the requirements of electrical harmonic analysis.
基于三线插值离散傅里叶变换的电力系统谐波分析方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信