Heart Chamber Segmentation in Cardiomegaly Conditions Using the CNN Method with U-Net Architecture

Tommy Saputra, Siti Nurmaini, Muhammad Taufik Roseno, Hadi Syaputra
{"title":"Heart Chamber Segmentation in Cardiomegaly Conditions Using the CNN Method with U-Net Architecture","authors":"Tommy Saputra, Siti Nurmaini, Muhammad Taufik Roseno, Hadi Syaputra","doi":"10.32736/sisfokom.v12i3.1976","DOIUrl":null,"url":null,"abstract":"Cardiomegaly is a disease in which sufferers show no symptoms and have symptoms such as shortness of breath, abnormal heartbeat and edema. Cardiomegaly will cause the sufferer's heart to pump harder than usual. Early diagnosis of cardiomegaly can help make decisions about whether the heart is abnormal or normal. In addition, due to the problem that manual examination takes time and requires human interpretation and experience, tools are needed to automatically develop and identify normal and abnormal hearts. Therefore, this study proposes cardiac chamber segmentation using 2D (two-dimensional) ultrasound convolutional neural networks for rapid cardiomegaly screening in clinical applications based on heart ultrasound examination. The proposed approach uses a CNN with a U-Net architecture model with abnormal and normal heart data. The research results obtained used the pixel matrix evaluation Avg_accuracy of 99.50%, Val_accuracy of 97.98% and Mean_IoU of 90.01%.","PeriodicalId":34309,"journal":{"name":"Jurnal Sisfokom","volume":"107 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sisfokom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32736/sisfokom.v12i3.1976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiomegaly is a disease in which sufferers show no symptoms and have symptoms such as shortness of breath, abnormal heartbeat and edema. Cardiomegaly will cause the sufferer's heart to pump harder than usual. Early diagnosis of cardiomegaly can help make decisions about whether the heart is abnormal or normal. In addition, due to the problem that manual examination takes time and requires human interpretation and experience, tools are needed to automatically develop and identify normal and abnormal hearts. Therefore, this study proposes cardiac chamber segmentation using 2D (two-dimensional) ultrasound convolutional neural networks for rapid cardiomegaly screening in clinical applications based on heart ultrasound examination. The proposed approach uses a CNN with a U-Net architecture model with abnormal and normal heart data. The research results obtained used the pixel matrix evaluation Avg_accuracy of 99.50%, Val_accuracy of 97.98% and Mean_IoU of 90.01%.
基于U-Net结构的CNN心室分割方法
心脏肥大症是一种没有症状的疾病,患者会出现呼吸短促、心跳异常、水肿等症状。心脏肿大会导致患者的心脏跳动比平时更剧烈。心脏肿大的早期诊断有助于判断心脏是异常还是正常。此外,由于人工检查费时,需要人工解释和经验,因此需要工具来自动开发和识别正常和异常的心脏。因此,本研究提出在心脏超声检查的基础上,利用二维(二维)超声卷积神经网络进行心室分割,在临床应用中快速筛查心脏肿大。该方法使用具有U-Net结构的CNN模型来处理异常和正常的心脏数据。采用像素矩阵评价得到的研究结果Avg_accuracy为99.50%,Val_accuracy为97.98%,Mean_IoU为90.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
40
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信