Behavior of Sludge Dewaterability and Nutrient Contents after Treatment with Cellulose-Based Flocculants with Combined PTS and Catalytic Behavior of Sludge towards Tetracycline Degradation
{"title":"Behavior of Sludge Dewaterability and Nutrient Contents after Treatment with Cellulose-Based Flocculants with Combined PTS and Catalytic Behavior of Sludge towards Tetracycline Degradation","authors":"Jannatul Rumky, Ekaterina Bandina, Eveliina Repo","doi":"10.3390/resources12020017","DOIUrl":null,"url":null,"abstract":"Wastewater treatment plants are increasingly interested in adopting inorganic coagulants and organic flocculants in their sludge treatment process since sludge disposal costs more than half of the overall operational costs. This study synthesized poly titanium sulfate (PTS) by different molar ratios and used the best one with cellulose-based flocculants for sludge conditioning. PTS synthesized with a 1:2 molar ratio showed the lowest capillary suction time (CST) of sludge and was selected for further studies with cellulose-based flocculants. As bio-based flocculants have gained popularity due to current environmental problems, cationized cellulose-based flocculants (Ce-CTA) were used in this work with or without PTS for sludge treatment. After coagulation–flocculation, dewaterability of sludge enhanced, and the Lowry and Anthrone method was used to assess proteins and polysaccharides. Next, metal content and nutrients such as total phosphorus, phosphate, and nitrate were measured by ICP-OES and IC, and we found promising results of phosphate especially at pH 3. Higher total phosphorus content was found at pH 3 and 9, and even at pH 6 after PTS or PTS+Ce-CTA treatment. In addition, PTS-treated sludge materials also showed catalytic behavior, suggesting a new research avenue for future development. Based on this study, the PTS+Ce-CTA combination is promising for sludge treatment and nutrient recovery, along with the possibility for the further valorization of the sludge materials.","PeriodicalId":37723,"journal":{"name":"Resources","volume":"42 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/resources12020017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Wastewater treatment plants are increasingly interested in adopting inorganic coagulants and organic flocculants in their sludge treatment process since sludge disposal costs more than half of the overall operational costs. This study synthesized poly titanium sulfate (PTS) by different molar ratios and used the best one with cellulose-based flocculants for sludge conditioning. PTS synthesized with a 1:2 molar ratio showed the lowest capillary suction time (CST) of sludge and was selected for further studies with cellulose-based flocculants. As bio-based flocculants have gained popularity due to current environmental problems, cationized cellulose-based flocculants (Ce-CTA) were used in this work with or without PTS for sludge treatment. After coagulation–flocculation, dewaterability of sludge enhanced, and the Lowry and Anthrone method was used to assess proteins and polysaccharides. Next, metal content and nutrients such as total phosphorus, phosphate, and nitrate were measured by ICP-OES and IC, and we found promising results of phosphate especially at pH 3. Higher total phosphorus content was found at pH 3 and 9, and even at pH 6 after PTS or PTS+Ce-CTA treatment. In addition, PTS-treated sludge materials also showed catalytic behavior, suggesting a new research avenue for future development. Based on this study, the PTS+Ce-CTA combination is promising for sludge treatment and nutrient recovery, along with the possibility for the further valorization of the sludge materials.
ResourcesEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.20
自引率
6.10%
发文量
0
审稿时长
11 weeks
期刊介绍:
Resources (ISSN 2079-9276) is an international, scholarly open access journal on the topic of natural resources. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and methodical details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: manuscripts regarding research proposals and research ideas will be particularly welcomed, electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Subject Areas: natural resources, water resources, mineral resources, energy resources, land resources, plant and animal resources, genetic resources, ecology resources, resource management and policy, resources conservation and recycling.