Predictive modeling and machining performance optimization during drilling of polymer nanocomposites reinforced by graphene oxide/carbon fiber

IF 1.2 Q3 ENGINEERING, MECHANICAL
Kumar Jogendra, Rajesh Kumar Verma, Arpan Kumar Mondal
{"title":"Predictive modeling and machining performance optimization during drilling of polymer nanocomposites reinforced by graphene oxide/carbon fiber","authors":"Kumar Jogendra, Rajesh Kumar Verma, Arpan Kumar Mondal","doi":"10.24425/ame.2020.131692","DOIUrl":null,"url":null,"abstract":"This paper explores the parametric appraisal and machining performance optimization during drilling of polymer nanocomposites reinforced by graphene oxide/-carbon fiber. The consequences of drilling parameters like cutting velocity, feed, and weight % of graphene oxide on machining responses, namely surface roughness, thrust force, torque, delamination (In/Out) has been investigated. An integrated approach of a Combined Quality Loss concept, Weighted Principal Component Analysis (WPCA), and Taguchi theory is proposed for the evaluation of drilling efficiency. Response surface methodology was employed for drilling of samples using the titanium aluminum nitride tool. WPCA is used for aggregation of multi-response into a single objective function. Analysis of variance reveals that cutting velocity is the most influential factor trailed by feed and weight % of graphene oxide. The proposed approach predicts the outcomes of the developed model for an optimal set of parameters. It has been validated by a confirmatory test, which shows a satisfactory agreement with the actual data. The lower feed plays a vital role in surface finishing. At lower feed, the development of the defect and cracks are found less with an improved surface finish. The proposed module demonstrates the feasibility of controlling quality and productivity factors.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"12 8","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ame.2020.131692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

This paper explores the parametric appraisal and machining performance optimization during drilling of polymer nanocomposites reinforced by graphene oxide/-carbon fiber. The consequences of drilling parameters like cutting velocity, feed, and weight % of graphene oxide on machining responses, namely surface roughness, thrust force, torque, delamination (In/Out) has been investigated. An integrated approach of a Combined Quality Loss concept, Weighted Principal Component Analysis (WPCA), and Taguchi theory is proposed for the evaluation of drilling efficiency. Response surface methodology was employed for drilling of samples using the titanium aluminum nitride tool. WPCA is used for aggregation of multi-response into a single objective function. Analysis of variance reveals that cutting velocity is the most influential factor trailed by feed and weight % of graphene oxide. The proposed approach predicts the outcomes of the developed model for an optimal set of parameters. It has been validated by a confirmatory test, which shows a satisfactory agreement with the actual data. The lower feed plays a vital role in surface finishing. At lower feed, the development of the defect and cracks are found less with an improved surface finish. The proposed module demonstrates the feasibility of controlling quality and productivity factors.
氧化石墨烯/碳纤维增强聚合物纳米复合材料钻孔过程预测建模及加工性能优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archive of Mechanical Engineering
Archive of Mechanical Engineering ENGINEERING, MECHANICAL-
CiteScore
1.70
自引率
14.30%
发文量
0
审稿时长
15 weeks
期刊介绍: Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信