The Grassmannian of 3-planes in ℂ 8 is schön

Q3 Mathematics
Daniel Corey, Dante Luber
{"title":"The Grassmannian of 3-planes in ℂ 8 is schön","authors":"Daniel Corey, Dante Luber","doi":"10.5802/alco.302","DOIUrl":null,"url":null,"abstract":"We prove that the open subvariety Gr 0 (3,8) of the Grassmannian Gr(3,8) determined by the nonvanishing of all Plücker coordinates is schön, i.e. all of its initial degenerations are smooth. Furthermore, we find an initial degeneration that has two connected components, and show that the remaining initial degenerations, up to symmetry, are irreducible. As an application, we prove that the Chow quotient of Gr(3,8) by the diagonal torus of PGL(8) is the log canonical compactification of the moduli space of 8 lines in ℙ 2 , resolving a conjecture of Hacking, Keel, and Tevelev. Along the way we develop various techniques to study finite inverse limits of schemes.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":"125 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the open subvariety Gr 0 (3,8) of the Grassmannian Gr(3,8) determined by the nonvanishing of all Plücker coordinates is schön, i.e. all of its initial degenerations are smooth. Furthermore, we find an initial degeneration that has two connected components, and show that the remaining initial degenerations, up to symmetry, are irreducible. As an application, we prove that the Chow quotient of Gr(3,8) by the diagonal torus of PGL(8) is the log canonical compactification of the moduli space of 8 lines in ℙ 2 , resolving a conjecture of Hacking, Keel, and Tevelev. Along the way we develop various techniques to study finite inverse limits of schemes.
ℂ8中的3-平面的格拉斯曼很精彩
证明了由所有pl cker坐标不消失决定的Grassmannian Gr(3,8)的开子簇Gr 0(3,8)为schön,即它的所有初始退化都是光滑的。进一步,我们发现了一个具有两个连通分量的初始退化,并证明了剩余的初始退化在对称范围内是不可约的。作为应用,我们利用PGL(8)的对角环面证明了Gr(3,8)的Chow商是方程组中8条线模空间的对数正则紧化,从而解决了Hacking、Keel和Tevelev的一个猜想。在此过程中,我们开发了各种技术来研究格式的有限逆极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信