{"title":"On the anisotropy theorem of Papadakis and Petrotou","authors":"Kalle Karu, Elizabeth Xiao","doi":"10.5802/alco.298","DOIUrl":null,"url":null,"abstract":"We study the anisotropy theorem for Stanley-Reisner rings of simplicial homology spheres in characteristic 2 by Papadakis and Petrotou. This theorem implies the Hard Lefschetz theorem as well as McMullen’s g-conjecture for such spheres. Our first result is an explicit description of the quadratic form. We use this description to prove a conjecture stated by Papadakis and Petrotou. All anisotropy theorems for homology spheres and pseudo-manifolds in characteristic 2 follow from this conjecture. Using a specialization argument, we prove anisotropy for certain homology spheres over the field ℚ. These results provide another self-contained proof of the g-conjecture for homology spheres in characteristic 2.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":"123 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4
Abstract
We study the anisotropy theorem for Stanley-Reisner rings of simplicial homology spheres in characteristic 2 by Papadakis and Petrotou. This theorem implies the Hard Lefschetz theorem as well as McMullen’s g-conjecture for such spheres. Our first result is an explicit description of the quadratic form. We use this description to prove a conjecture stated by Papadakis and Petrotou. All anisotropy theorems for homology spheres and pseudo-manifolds in characteristic 2 follow from this conjecture. Using a specialization argument, we prove anisotropy for certain homology spheres over the field ℚ. These results provide another self-contained proof of the g-conjecture for homology spheres in characteristic 2.