Christopher C. Jelloian, Nicolas Q. Minesi, R. Mitchell Spearrin, Augustin Tibère-Inglesse, Megan E. MacDonald, Brett A. Cruden
{"title":"Mars2020 Entry Shock Layer Thermochemical Kinetics Examined by Megahertz-Rate Laser Absorption Spectroscopy","authors":"Christopher C. Jelloian, Nicolas Q. Minesi, R. Mitchell Spearrin, Augustin Tibère-Inglesse, Megan E. MacDonald, Brett A. Cruden","doi":"10.2514/1.t6868","DOIUrl":null,"url":null,"abstract":"A mid-infrared laser absorption diagnostic was deployed to examine the evolution of thermophysical properties across a simulated Mars2020 shock layer in the Electric Arc Shock Tube (EAST) facility at NASA Ames. Rapid laser tuning techniques using bias-tee circuitry enabled quantitative temperature and number density measurements of [Formula: see text] and CO with microsecond resolution over a shock velocity range of 1.30–3.75 km/s. Two interband cascade lasers were utilized at 4.17 and 4.19 μm to resolve rovibrational [Formula: see text] lines spanning across [Formula: see text] to [Formula: see text] in the asymmetric stretch fundamental bands. In test cases with enough energy to dissociate [Formula: see text], a quantum cascade laser scanned multiple transitions of the CO fundamental bands near [Formula: see text]. The results are compared to the Data Parallel Line Relaxation (DPLR) code and Lagrange shock tube analysis (LASTA) simulations of the shock layer. A numerical simulation of the compressible boundary layer is used to account for measurement sensitivities to this flow feature in the EAST facility. Temperature and species transients are compared to multiple chemical kinetic models. The laser absorption data presented in this work can be used to refine the models used to simulate the aerothermal environment encountered during Mars entry.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":"46 200","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.t6868","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A mid-infrared laser absorption diagnostic was deployed to examine the evolution of thermophysical properties across a simulated Mars2020 shock layer in the Electric Arc Shock Tube (EAST) facility at NASA Ames. Rapid laser tuning techniques using bias-tee circuitry enabled quantitative temperature and number density measurements of [Formula: see text] and CO with microsecond resolution over a shock velocity range of 1.30–3.75 km/s. Two interband cascade lasers were utilized at 4.17 and 4.19 μm to resolve rovibrational [Formula: see text] lines spanning across [Formula: see text] to [Formula: see text] in the asymmetric stretch fundamental bands. In test cases with enough energy to dissociate [Formula: see text], a quantum cascade laser scanned multiple transitions of the CO fundamental bands near [Formula: see text]. The results are compared to the Data Parallel Line Relaxation (DPLR) code and Lagrange shock tube analysis (LASTA) simulations of the shock layer. A numerical simulation of the compressible boundary layer is used to account for measurement sensitivities to this flow feature in the EAST facility. Temperature and species transients are compared to multiple chemical kinetic models. The laser absorption data presented in this work can be used to refine the models used to simulate the aerothermal environment encountered during Mars entry.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.