Trajectory generation and tracking control for aggressive tail-sitter flights

IF 7.5 1区 计算机科学 Q1 ROBOTICS
Guozheng Lu, Yixi Cai, Nan Chen, Fanze Kong, Yunfan Ren, Fu Zhang
{"title":"Trajectory generation and tracking control for aggressive tail-sitter flights","authors":"Guozheng Lu, Yixi Cai, Nan Chen, Fanze Kong, Yunfan Ren, Fu Zhang","doi":"10.1177/02783649231207655","DOIUrl":null,"url":null,"abstract":"We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate (not simplified) aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints, and actuator saturation. The planned trajectory of flat output is transformed into state trajectory in real time with optional consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The proposed algorithms are implemented on our quadrotor tail-sitter prototype, “Hong Hu,” and their effectiveness are demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10 m/s, typical tail-sitter maneuvers (transition, level flight, and loiter) with speed up to 20 m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight, and Cuban Eight) with acceleration up to 2.5 g. The video demonstration is available at https://youtu.be/2x_bLbVuyrk .","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649231207655","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate (not simplified) aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints, and actuator saturation. The planned trajectory of flat output is transformed into state trajectory in real time with optional consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The proposed algorithms are implemented on our quadrotor tail-sitter prototype, “Hong Hu,” and their effectiveness are demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10 m/s, typical tail-sitter maneuvers (transition, level flight, and loiter) with speed up to 20 m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight, and Cuban Eight) with acceleration up to 2.5 g. The video demonstration is available at https://youtu.be/2x_bLbVuyrk .
咄咄逼人尾坐飞行的轨迹生成与跟踪控制
研究了尾翼无人机的轨迹生成与跟踪控制的理论与实践问题。从理论上讲,充分利用无人机的实际气动模型,重点研究微分平整度特性,为生成动态可行的轨迹和实现高性能的跟踪控制奠定基础。我们发现,通过指定坐标飞行条件和选择飞行器位置作为平坦输出,在整个飞行包线内精确(而不是简化)的空气动力学模型中,尾翼是差分平坦的。这一基本特性使我们能够在轨迹规划和跟踪控制中充分利用高保真的空气动力学模型来实现精确的尾坐飞行。特别地,提出了一种基于优化的尾座轨迹规划器,用于设计高质量、光滑的轨迹,同时考虑了动力学约束、无奇点约束和执行器饱和。将平面输出的规划轨迹实时转换为状态轨迹,并可选择考虑环境中的风。为了跟踪状态轨迹,开发了一种全局的、无奇点的、最小参数化的流形MPC,充分利用精确的气动模型在整个飞行包线内实现高精度的轨迹跟踪。所提出的算法在我们的四旋翼飞机原型“红虎”上实现,通过室内和室外现场测试的广泛现实世界实验证明了它们的有效性,包括敏捷的SE(3)飞行,通过连续的窄窗,需要特定的姿态和速度高达10米/秒,典型的尾坐机动(过渡,水平飞行和徘徊),速度高达20米/秒,以及极具侵略性的特技飞行机动(翻翼,环,垂直八,和古巴八)加速度高达2.5 g。视频演示可以在https://youtu.be/2x_bLbVuyrk上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Robotics Research
International Journal of Robotics Research 工程技术-机器人学
CiteScore
22.20
自引率
0.00%
发文量
34
审稿时长
6-12 weeks
期刊介绍: The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research. IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics. The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time. In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信