Development of PV hosting-capacity prediction method based on Markov Chain for high PV penetration with utility-scale battery storage on low-voltage grid

IF 2 Q4 ENERGY & FUELS
Wijaya Yudha Atmaja, None Sarjiya, Lesnanto Multa Putranto
{"title":"Development of PV hosting-capacity prediction method based on Markov Chain for high PV penetration with utility-scale battery storage on low-voltage grid","authors":"Wijaya Yudha Atmaja, None Sarjiya, Lesnanto Multa Putranto","doi":"10.1080/14786451.2023.2261759","DOIUrl":null,"url":null,"abstract":"The previous stochastic hosting capacity prediction method using the Monte Carlo method for high photovoltaic (PV) penetration with a battery energy storage system (BESS) required a large number of computations to achieve the expected accuracy. The problem of high computational load must be addressed so that the electrical distribution planner can practically use the PV hosting capacity prediction in actual situations. Therefore, this study developed a Markov-chain-based PV hosting capacity prediction method for high PV penetration using BESS. The proposed method is described in detail, followed by case and validation studies. The obtained hosting capacity was 123.58 kW, which increased to 3676.4 kW after the utility-scale BESS implementation. The results demonstrate that the proposed Markov-chain-based PV hosting capacity prediction method outperforms the Monte Carlo method, which is the most popular stochastic hosting capacity method, in terms of accuracy and computational cost.","PeriodicalId":14406,"journal":{"name":"International Journal of Sustainable Energy","volume":"26 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14786451.2023.2261759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The previous stochastic hosting capacity prediction method using the Monte Carlo method for high photovoltaic (PV) penetration with a battery energy storage system (BESS) required a large number of computations to achieve the expected accuracy. The problem of high computational load must be addressed so that the electrical distribution planner can practically use the PV hosting capacity prediction in actual situations. Therefore, this study developed a Markov-chain-based PV hosting capacity prediction method for high PV penetration using BESS. The proposed method is described in detail, followed by case and validation studies. The obtained hosting capacity was 123.58 kW, which increased to 3676.4 kW after the utility-scale BESS implementation. The results demonstrate that the proposed Markov-chain-based PV hosting capacity prediction method outperforms the Monte Carlo method, which is the most popular stochastic hosting capacity method, in terms of accuracy and computational cost.
基于马尔可夫链的低压电网高渗透率光伏发电容量预测方法研究
以往基于蒙特卡罗方法的高光伏渗透率电池储能系统随机承载容量预测方法需要大量的计算才能达到预期的精度。为了使配电规划人员能够在实际情况中实际使用光伏主机容量预测,必须解决计算负荷大的问题。因此,本研究基于BESS开发了一种基于马尔可夫链的高光伏渗透率光伏托管容量预测方法。详细介绍了该方法,然后进行了案例和验证研究。获得的托管容量为123.58千瓦,在公用事业规模的BESS实施后增加到3676.4千瓦。结果表明,本文提出的基于马尔可夫链的光伏装机容量预测方法在精度和计算成本方面都优于蒙特卡罗方法。蒙特卡罗方法是目前最流行的随机装机容量预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
3.20%
发文量
52
期刊介绍: Engineering and sustainable development are intrinsically linked. All capital plant and every consumable product depends on an engineering input through design, manufacture and operation, if not for the product itself then for the equipment required to process and transport the raw materials and the final product. Many aspects of sustainable development depend directly on appropriate and timely actions by engineers. Engineering is an extended process of analysis, synthesis, evaluation and execution and, therefore, it is argued that engineers must be involved from the outset of any proposal to develop sustainable solutions. Engineering embraces many disciplines and truly sustainable solutions are usually inter-disciplinary in nature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信