Tableau formulas for skew Grothendieck polynomials

Pub Date : 2023-09-27 DOI:10.2969/jmsj/89928992
Harry TAMVAKIS
{"title":"Tableau formulas for skew Grothendieck polynomials","authors":"Harry TAMVAKIS","doi":"10.2969/jmsj/89928992","DOIUrl":null,"url":null,"abstract":"An element of a Weyl group of classical type is skew if it is the left factor in a reduced factorization of a Grassmannian element. The skew Grothendieck polynomials are those which are indexed by skew elements of the Weyl group. We define set-valued tableaux which are fillings of the associated skew Young diagrams and use them to prove tableau formulas for the skew double Grothendieck polynomials in all four classical Lie types. We deduce tableau formulas for the Grassmannian Grothendieck polynomials and the $K$-theoretic analogues of the (double mixed) skew Stanley functions in the respective Lie types.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2969/jmsj/89928992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An element of a Weyl group of classical type is skew if it is the left factor in a reduced factorization of a Grassmannian element. The skew Grothendieck polynomials are those which are indexed by skew elements of the Weyl group. We define set-valued tableaux which are fillings of the associated skew Young diagrams and use them to prove tableau formulas for the skew double Grothendieck polynomials in all four classical Lie types. We deduce tableau formulas for the Grassmannian Grothendieck polynomials and the $K$-theoretic analogues of the (double mixed) skew Stanley functions in the respective Lie types.
分享
查看原文
斜格罗滕迪克多项式的表格公式
如果一个经典型Weyl群的元素是格拉斯曼元素约简分解的左因子,则该元素是偏斜的。偏格罗登狄克多项式是由Weyl群的偏元索引的多项式。我们定义了集值表,这些表是相关的斜杨图的填充,并用它们证明了所有四种经典李类型的斜双格罗登狄克多项式的表公式。我们在各自的Lie类型中推导出Grassmannian Grothendieck多项式和(双重混合)偏态Stanley函数的K -理论类似物的表格公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信