The Excluded Tree Minor Theorem Revisited

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Vida Dujmović, Robert Hickingbotham, Gwenaël Joret, Piotr Micek, Pat Morin, David R. Wood
{"title":"The Excluded Tree Minor Theorem Revisited","authors":"Vida Dujmović, Robert Hickingbotham, Gwenaël Joret, Piotr Micek, Pat Morin, David R. Wood","doi":"10.1017/s0963548323000275","DOIUrl":null,"url":null,"abstract":"Abstract We prove that for every tree $T$ of radius $h$ , there is an integer $c$ such that every $T$ -minor-free graph is contained in $H\\boxtimes K_c$ for some graph $H$ with pathwidth at most $2h-1$ . This is a qualitative strengthening of the Excluded Tree Minor Theorem of Robertson and Seymour (GM I). We show that radius is the right parameter to consider in this setting, and $2h-1$ is the best possible bound.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000275","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We prove that for every tree $T$ of radius $h$ , there is an integer $c$ such that every $T$ -minor-free graph is contained in $H\boxtimes K_c$ for some graph $H$ with pathwidth at most $2h-1$ . This is a qualitative strengthening of the Excluded Tree Minor Theorem of Robertson and Seymour (GM I). We show that radius is the right parameter to consider in this setting, and $2h-1$ is the best possible bound.
重新考察排除树小定理
摘要证明了对于每棵半径为$h$的树$T$,存在一个整数$c$,使得对于路径宽度不超过$2h-1$的图$h$,每一个$T$无次图$都包含在$h \box * K_c$中。这是对Robertson和Seymour的排除树小定理(GM I)的定性强化。我们证明了半径是在这种情况下考虑的正确参数,并且$2h-1$是最好的可能界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信