PoseSonic

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Saif Mahmud, Ke Li, Guilin Hu, Hao Chen, Richard Jin, Ruidong Zhang, François Guimbretière, Cheng Zhang
{"title":"PoseSonic","authors":"Saif Mahmud, Ke Li, Guilin Hu, Hao Chen, Richard Jin, Ruidong Zhang, François Guimbretière, Cheng Zhang","doi":"10.1145/3610895","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce PoseSonic, an intelligent acoustic sensing solution for smartglasses that estimates upper body poses. Our system only requires two pairs of microphones and speakers on the hinges of the eyeglasses to emit FMCW-encoded inaudible acoustic signals and receive reflected signals for body pose estimation. Using a customized deep learning model, PoseSonic estimates the 3D positions of 9 body joints including the shoulders, elbows, wrists, hips, and nose. We adopt a cross-modal supervision strategy to train our model using synchronized RGB video frames as ground truth. We conducted in-lab and semi-in-the-wild user studies with 22 participants to evaluate PoseSonic, and our user-independent model achieved a mean per joint position error of 6.17 cm in the lab setting and 14.12 cm in semi-in-the-wild setting when predicting the 9 body joint positions in 3D. Our further studies show that the performance was not significantly impacted by different surroundings or when the devices were remounted or by real-world environmental noise. Finally, we discuss the opportunities, challenges, and limitations of deploying PoseSonic in real-world applications.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"13 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce PoseSonic, an intelligent acoustic sensing solution for smartglasses that estimates upper body poses. Our system only requires two pairs of microphones and speakers on the hinges of the eyeglasses to emit FMCW-encoded inaudible acoustic signals and receive reflected signals for body pose estimation. Using a customized deep learning model, PoseSonic estimates the 3D positions of 9 body joints including the shoulders, elbows, wrists, hips, and nose. We adopt a cross-modal supervision strategy to train our model using synchronized RGB video frames as ground truth. We conducted in-lab and semi-in-the-wild user studies with 22 participants to evaluate PoseSonic, and our user-independent model achieved a mean per joint position error of 6.17 cm in the lab setting and 14.12 cm in semi-in-the-wild setting when predicting the 9 body joint positions in 3D. Our further studies show that the performance was not significantly impacted by different surroundings or when the devices were remounted or by real-world environmental noise. Finally, we discuss the opportunities, challenges, and limitations of deploying PoseSonic in real-world applications.
PoseSonic
在本文中,我们介绍了PoseSonic,一种用于智能眼镜的智能声学传感解决方案,可以估计上半身姿势。我们的系统只需要在眼镜的铰链上安装两对麦克风和扬声器,就可以发出fmcw编码的不听声信号,并接收反射信号,用于估计身体姿势。PoseSonic使用定制的深度学习模型来估计9个身体关节的3D位置,包括肩膀、肘部、手腕、臀部和鼻子。我们采用一种跨模态监督策略来训练我们的模型,使用同步的RGB视频帧作为基础真值。我们对22名参与者进行了实验室和半野外用户研究来评估PoseSonic,我们的用户独立模型在预测9个身体关节的3D位置时,在实验室环境下的平均每个关节位置误差为6.17 cm,在半野外环境下的平均每个关节位置误差为14.12 cm。我们进一步的研究表明,不同的环境、重新安装设备或真实环境噪声对性能没有显著影响。最后,我们讨论了在实际应用中部署PoseSonic的机会、挑战和限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信