TAO

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sudershan Boovaraghavan, Prasoon Patidar, Yuvraj Agarwal
{"title":"TAO","authors":"Sudershan Boovaraghavan, Prasoon Patidar, Yuvraj Agarwal","doi":"10.1145/3610896","DOIUrl":null,"url":null,"abstract":"Translating fine-grained activity detection (e.g., phone ring, talking interspersed with silence and walking) into semantically meaningful and richer contextual information (e.g., on a phone call for 20 minutes while exercising) is essential towards enabling a range of healthcare and human-computer interaction applications. Prior work has proposed building ontologies or temporal analysis of activity patterns with limited success in capturing complex real-world context patterns. We present TAO, a hybrid system that leverages OWL-based ontologies and temporal clustering approaches to detect high-level contexts from human activities. TAO can characterize sequential activities that happen one after the other and activities that are interleaved or occur in parallel to detect a richer set of contexts more accurately than prior work. We evaluate TAO on real-world activity datasets (Casas and Extrasensory) and show that our system achieves, on average, 87% and 80% accuracy for context detection, respectively. We deploy and evaluate TAO in a real-world setting with eight participants using our system for three hours each, demonstrating TAO's ability to capture semantically meaningful contexts in the real world. Finally, to showcase the usefulness of contexts, we prototype wellness applications that assess productivity and stress and show that the wellness metrics calculated using contexts provided by TAO are much closer to the ground truth (on average within 1.1%), as compared to the baseline approach (on average within 30%).","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"13 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Translating fine-grained activity detection (e.g., phone ring, talking interspersed with silence and walking) into semantically meaningful and richer contextual information (e.g., on a phone call for 20 minutes while exercising) is essential towards enabling a range of healthcare and human-computer interaction applications. Prior work has proposed building ontologies or temporal analysis of activity patterns with limited success in capturing complex real-world context patterns. We present TAO, a hybrid system that leverages OWL-based ontologies and temporal clustering approaches to detect high-level contexts from human activities. TAO can characterize sequential activities that happen one after the other and activities that are interleaved or occur in parallel to detect a richer set of contexts more accurately than prior work. We evaluate TAO on real-world activity datasets (Casas and Extrasensory) and show that our system achieves, on average, 87% and 80% accuracy for context detection, respectively. We deploy and evaluate TAO in a real-world setting with eight participants using our system for three hours each, demonstrating TAO's ability to capture semantically meaningful contexts in the real world. Finally, to showcase the usefulness of contexts, we prototype wellness applications that assess productivity and stress and show that the wellness metrics calculated using contexts provided by TAO are much closer to the ground truth (on average within 1.1%), as compared to the baseline approach (on average within 30%).
TAO
将细粒度的活动检测(例如,电话铃声、在沉默和行走中穿插的谈话)转换为语义上有意义和更丰富的上下文信息(例如,在锻炼时打20分钟的电话)对于实现一系列医疗保健和人机交互应用程序至关重要。先前的工作提出了构建本体或活动模式的时间分析,但在捕获复杂的现实世界上下文模式方面收效甚微。我们提出了TAO,这是一个混合系统,它利用基于owl的本体和时间聚类方法来检测人类活动的高级上下文。TAO可以描述一个接一个发生的连续活动,以及交错或并行发生的活动,以比以前的工作更准确地检测更丰富的上下文集。我们在真实世界的活动数据集(Casas和extrasory)上评估了TAO,并表明我们的系统在上下文检测方面分别达到了平均87%和80%的准确率。我们在一个真实世界的环境中部署和评估了TAO,有八名参与者使用我们的系统,每人使用三个小时,展示了TAO在真实世界中捕获语义上有意义的上下文的能力。最后,为了展示上下文的有用性,我们对评估生产力和压力的健康应用程序进行了原型化,并表明使用TAO提供的上下文计算的健康指标更接近基本事实(平均在1.1%以内),而基线方法(平均在30%以内)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信