On the Super (Edge)-Connectivity of Generalized Johnson Graphs

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Zhecheng Yu, Liqiong Xu, Xuemin Wu, Chuanye Zheng
{"title":"On the Super (Edge)-Connectivity of Generalized Johnson Graphs","authors":"Zhecheng Yu, Liqiong Xu, Xuemin Wu, Chuanye Zheng","doi":"10.1142/s012905412350017x","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text], [Formula: see text] and [Formula: see text] be non-negative integers. The generalized Johnson graph [Formula: see text] is the graph whose vertices are the [Formula: see text]-subsets of the set [Formula: see text], and two vertices are adjacent if and only if they intersect with [Formula: see text] elements. Special cases of generalized Johnson graph include the Kneser graph [Formula: see text] and the Johnson graph [Formula: see text]. These graphs play an important role in coding theory, Ramsey theory, combinatorial geometry and hypergraphs theory. In this paper, we discuss the connectivity properties of the Kneser graph [Formula: see text] and [Formula: see text] by their symmetric properties. Specifically, with the help of some properties of vertex/edge-transitive graphs we prove that [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text] are super restricted edge-connected. Besides, we obtain the exact value of the restricted edge-connectivity and the cyclic edge-connectivity of the Kneser graph [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text], and further show that the Kneser graph [Formula: see text] [Formula: see text] is super vertex-connected and super cyclically edge-connected.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s012905412350017x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text], [Formula: see text] and [Formula: see text] be non-negative integers. The generalized Johnson graph [Formula: see text] is the graph whose vertices are the [Formula: see text]-subsets of the set [Formula: see text], and two vertices are adjacent if and only if they intersect with [Formula: see text] elements. Special cases of generalized Johnson graph include the Kneser graph [Formula: see text] and the Johnson graph [Formula: see text]. These graphs play an important role in coding theory, Ramsey theory, combinatorial geometry and hypergraphs theory. In this paper, we discuss the connectivity properties of the Kneser graph [Formula: see text] and [Formula: see text] by their symmetric properties. Specifically, with the help of some properties of vertex/edge-transitive graphs we prove that [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text] are super restricted edge-connected. Besides, we obtain the exact value of the restricted edge-connectivity and the cyclic edge-connectivity of the Kneser graph [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text], and further show that the Kneser graph [Formula: see text] [Formula: see text] is super vertex-connected and super cyclically edge-connected.
关于广义Johnson图的超(边)连通性
设[公式:见文]、[公式:见文]、[公式:见文]为非负整数。广义Johnson图[公式:见文]是其顶点为[公式:见文]集合[公式:见文]的子集[公式:见文]的图,且两个顶点相邻当且仅当它们与[公式:见文]元素相交。广义Johnson图的特殊情况包括Kneser图[公式:见文]和Johnson图[公式:见文]。这些图在编码理论、拉姆齐理论、组合几何和超图理论中起着重要的作用。本文根据Kneser图[公式:见文]和[公式:见文]的对称性质,讨论了它们的连通性。具体来说,利用点/边传递图的一些性质,证明了[公式:见文][公式:见文]和[公式:见文][公式:见文]是超受限边连通的。此外,我们得到了Kneser图[公式:见文][公式:见文]和[公式:见文][公式:见文]的限制边连通性和循环边连通性的精确值,并进一步证明了Kneser图[公式:见文][公式:见文]是超顶点连通和超循环边连通。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信