Echo

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Meng Xue, Kuang Peng, Xueluan Gong, Qian Zhang, Yanjiao Chen, Routing Li
{"title":"Echo","authors":"Meng Xue, Kuang Peng, Xueluan Gong, Qian Zhang, Yanjiao Chen, Routing Li","doi":"10.1145/3610874","DOIUrl":null,"url":null,"abstract":"Intelligent audio systems are ubiquitous in our lives, such as speech command recognition and speaker recognition. However, it is shown that deep learning-based intelligent audio systems are vulnerable to adversarial attacks. In this paper, we propose a physical adversarial attack that exploits reverberation, a natural indoor acoustic effect, to realize imperceptible, fast, and targeted black-box attacks. Unlike existing attacks that constrain the magnitude of adversarial perturbations within a fixed radius, we generate reverberation-alike perturbations that blend naturally with the original voice sample 1. Additionally, we can generate more robust adversarial examples even under over-the-air propagation by considering distortions in the physical environment. Extensive experiments are conducted using two popular intelligent audio systems in various situations, such as different room sizes, distance, and ambient noises. The results show that Echo can invade into intelligent audio systems in both digital and physical over-the-air environment.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"25 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent audio systems are ubiquitous in our lives, such as speech command recognition and speaker recognition. However, it is shown that deep learning-based intelligent audio systems are vulnerable to adversarial attacks. In this paper, we propose a physical adversarial attack that exploits reverberation, a natural indoor acoustic effect, to realize imperceptible, fast, and targeted black-box attacks. Unlike existing attacks that constrain the magnitude of adversarial perturbations within a fixed radius, we generate reverberation-alike perturbations that blend naturally with the original voice sample 1. Additionally, we can generate more robust adversarial examples even under over-the-air propagation by considering distortions in the physical environment. Extensive experiments are conducted using two popular intelligent audio systems in various situations, such as different room sizes, distance, and ambient noises. The results show that Echo can invade into intelligent audio systems in both digital and physical over-the-air environment.
回声
智能音频系统在我们的生活中无处不在,例如语音命令识别和说话人识别。然而,研究表明,基于深度学习的智能音频系统容易受到对抗性攻击。在本文中,我们提出了一种物理对抗性攻击,利用混响,一种自然的室内声学效应,实现难以察觉的,快速的,有针对性的黑盒攻击。与现有的将对抗性扰动的大小限制在固定半径内的攻击不同,我们产生了与原始语音样本自然混合的类似混响的扰动1。此外,通过考虑物理环境中的扭曲,我们甚至可以在空中传播下生成更健壮的对抗性示例。使用两种流行的智能音频系统在不同的情况下进行了广泛的实验,例如不同的房间大小,距离和环境噪声。结果表明,无论在数字环境还是物理无线环境下,Echo都可以入侵智能音频系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信