Haseena Sikkandar, Saroja S, Suseandhiran N, Manikandan B
{"title":"An intelligent approach for anomaly detection in credit card data using bat optimization algorithm","authors":"Haseena Sikkandar, Saroja S, Suseandhiran N, Manikandan B","doi":"10.4114/intartif.vol26iss72pp202-222","DOIUrl":null,"url":null,"abstract":"As technology advances, many people are utilising credit cards to purchase their necessities, and the number of credit card scams is increasing tremendously. However, illegal card transactions have been on the rise, costing financial institutions millions of dollars each year. The development of efficient fraud detection techniques is critical in reducing these deficits, but it is difficult due to the extremely unbalanced nature of most credit card datasets. As compared to conventional fraud detection methods, the proposed method will help in automatically detecting the fraud, identifying hidden correlations in data and reduced time for verification process. This is achieved by selecting relevant and unique features by using Bat Optimization Algorithm (BOA). Next, balancing is performed in the highly imbalanced credit card fraud dataset using Synthetic Minority over-sampling technique (SMOTE). Then finally the CNN model for anomaly detection in credit card data is built using full center loss function to improve fraud detection performance and stability. The proposed model is tested with Kaggle dataset and yields around 99% accuracy.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol26iss72pp202-222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
As technology advances, many people are utilising credit cards to purchase their necessities, and the number of credit card scams is increasing tremendously. However, illegal card transactions have been on the rise, costing financial institutions millions of dollars each year. The development of efficient fraud detection techniques is critical in reducing these deficits, but it is difficult due to the extremely unbalanced nature of most credit card datasets. As compared to conventional fraud detection methods, the proposed method will help in automatically detecting the fraud, identifying hidden correlations in data and reduced time for verification process. This is achieved by selecting relevant and unique features by using Bat Optimization Algorithm (BOA). Next, balancing is performed in the highly imbalanced credit card fraud dataset using Synthetic Minority over-sampling technique (SMOTE). Then finally the CNN model for anomaly detection in credit card data is built using full center loss function to improve fraud detection performance and stability. The proposed model is tested with Kaggle dataset and yields around 99% accuracy.
期刊介绍:
Inteligencia Artificial is a quarterly journal promoted and sponsored by the Spanish Association for Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. Particularly, the Journal welcomes: New approaches, techniques or methods to solve AI problems, which should include demonstrations of effectiveness oor improvement over existing methods. These demonstrations must be reproducible. Integration of different technologies or approaches to solve wide problems or belonging different areas. AI applications, which should describe in detail the problem or the scenario and the proposed solution, emphasizing its novelty and present a evaluation of the AI techniques that are applied. In addition to rapid publication and dissemination of unsolicited contributions, the journal is also committed to producing monographs, surveys or special issues on topics, methods or techniques of special relevance to the AI community. Inteligencia Artificial welcomes submissions written in English, Spaninsh or Portuguese. But at least, a title, summary and keywords in english should be included in each contribution.