Ji Chen, Xiao Chen, ומחן לֹשם, Robert Sinsabaugh, Moorhead Daryl L., Richard Bardgett, Nicolas Fanin, Andrew Nottingham
{"title":"Soil extracellular enzymes as drivers of soil carbon storage under nitrogen addition","authors":"Ji Chen, Xiao Chen, ומחן לֹשם, Robert Sinsabaugh, Moorhead Daryl L., Richard Bardgett, Nicolas Fanin, Andrew Nottingham","doi":"10.21203/rs.3.rs-3330596/v1","DOIUrl":null,"url":null,"abstract":"Abstract Enhanced anthropogenic nitrogen (N) inputs to ecosystems may have substantial impacts on soil organic carbon (SOC) cycling. One way to link species-rich soil microorganisms with specific SOC cycling processes is via soil extracellular enzyme activities (EEAs). Here, by presenting a meta-analysis on the response of soil C-degrading EEAs to N addition, our results show that N addition increases hydrolytic C-degrading EEAs that target simple polysaccharides by 12.8%, but decreases oxidative C-degrading EEAs that degrade complex phenolic macromolecules by 11.9%. The net effect of N addition on SOC storage is determined by the balance between the two types of C-degrading EEAs, with impacts varying across different ecosystem types. Our results help identify changes in soil microbial C use strategies under N addition. Incorporating this enzymatic influence into Earth system models could improve the representation of microbial processes as well as predictions of SOC dynamics in a changing environment.","PeriodicalId":500086,"journal":{"name":"Research Square (Research Square)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Square (Research Square)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-3330596/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Enhanced anthropogenic nitrogen (N) inputs to ecosystems may have substantial impacts on soil organic carbon (SOC) cycling. One way to link species-rich soil microorganisms with specific SOC cycling processes is via soil extracellular enzyme activities (EEAs). Here, by presenting a meta-analysis on the response of soil C-degrading EEAs to N addition, our results show that N addition increases hydrolytic C-degrading EEAs that target simple polysaccharides by 12.8%, but decreases oxidative C-degrading EEAs that degrade complex phenolic macromolecules by 11.9%. The net effect of N addition on SOC storage is determined by the balance between the two types of C-degrading EEAs, with impacts varying across different ecosystem types. Our results help identify changes in soil microbial C use strategies under N addition. Incorporating this enzymatic influence into Earth system models could improve the representation of microbial processes as well as predictions of SOC dynamics in a changing environment.