A hybrid approach of missing data imputation for upper gastrointestinal diagnosis

Q3 Engineering
Khaled M. Fouad
{"title":"A hybrid approach of missing data imputation for upper gastrointestinal diagnosis","authors":"Khaled M. Fouad","doi":"10.1504/ijaip.2023.129179","DOIUrl":null,"url":null,"abstract":"Gastrointestinal and liver diseases (GILDs) are the major causes of death and disability in Middle East. The investigation of upper gastrointestinal (GI) symptoms of a medically limited area resource is a challenge. The analysis of real-world clinical data of upper gastrointestinal (GI) using data mining techniques often is facing observations that the data contains missing values. In this paper, the proposed approach to missing data imputation is accomplished for categorical data onto upper GI diseases to apply the feature selection and classification algorithms with accurate and effective results for diagnosing upper GI diseases. This approach is evaluated by implementing experimental framework to apply five phases. These phases aim at partitioning the dataset to eight different datasets; with various ratio of missing data, performing the feature selection, imputing the missing data, classifying the imputed data, and finally, evaluating the outcome using k-fold cross validation for nine evaluation measures.","PeriodicalId":38797,"journal":{"name":"International Journal of Advanced Intelligence Paradigms","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Intelligence Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijaip.2023.129179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Gastrointestinal and liver diseases (GILDs) are the major causes of death and disability in Middle East. The investigation of upper gastrointestinal (GI) symptoms of a medically limited area resource is a challenge. The analysis of real-world clinical data of upper gastrointestinal (GI) using data mining techniques often is facing observations that the data contains missing values. In this paper, the proposed approach to missing data imputation is accomplished for categorical data onto upper GI diseases to apply the feature selection and classification algorithms with accurate and effective results for diagnosing upper GI diseases. This approach is evaluated by implementing experimental framework to apply five phases. These phases aim at partitioning the dataset to eight different datasets; with various ratio of missing data, performing the feature selection, imputing the missing data, classifying the imputed data, and finally, evaluating the outcome using k-fold cross validation for nine evaluation measures.
缺失数据的混合方法在上消化道诊断中的应用
胃肠道和肝脏疾病是中东地区造成死亡和残疾的主要原因。在医疗资源有限的地区,对上胃肠道症状的调查是一个挑战。在使用数据挖掘技术分析实际上消化道临床数据时,经常面临数据缺失值的问题。本文针对上消化道疾病的分类数据,完成缺失数据的补全方法,将具有准确有效结果的特征选择和分类算法应用于上消化道疾病的诊断。通过实施五个阶段的实验框架来评估这种方法。这些阶段旨在将数据集划分为八个不同的数据集;在缺失数据比例不同的情况下,进行特征选择,对缺失数据进行输入,对输入数据进行分类,最后对9个评价测度使用k-fold交叉验证对结果进行评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信