{"title":"Non-compact Einstein manifolds with symmetry","authors":"Christoph Böhm, Ramiro A. Lafuente","doi":"10.1090/jams/1022","DOIUrl":null,"url":null,"abstract":"For Einstein manifolds with negative scalar curvature admitting an isometric action of a Lie group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif upper G\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"sans-serif\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathsf {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with compact, smooth orbit space, we show that the nilradical <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif upper N\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"sans-serif\">N</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathsf {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif upper G\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"sans-serif\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathsf {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acts polarly and that the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif upper N\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"sans-serif\">N</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathsf {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-orbits can be extended to minimal Einstein submanifolds. As an application, we prove the Alekseevskii conjecture: Any homogeneous Einstein manifold with negative scalar curvature is diffeomorphic to a Euclidean space.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"23 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1022","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
For Einstein manifolds with negative scalar curvature admitting an isometric action of a Lie group G\mathsf {G} with compact, smooth orbit space, we show that the nilradical N\mathsf {N} of G\mathsf {G} acts polarly and that the N\mathsf {N}-orbits can be extended to minimal Einstein submanifolds. As an application, we prove the Alekseevskii conjecture: Any homogeneous Einstein manifold with negative scalar curvature is diffeomorphic to a Euclidean space.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.