Non-compact Einstein manifolds with symmetry

IF 3.5 1区 数学 Q1 MATHEMATICS
Christoph Böhm, Ramiro A. Lafuente
{"title":"Non-compact Einstein manifolds with symmetry","authors":"Christoph Böhm, Ramiro A. Lafuente","doi":"10.1090/jams/1022","DOIUrl":null,"url":null,"abstract":"For Einstein manifolds with negative scalar curvature admitting an isometric action of a Lie group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif upper G\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"sans-serif\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathsf {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with compact, smooth orbit space, we show that the nilradical <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif upper N\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"sans-serif\">N</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathsf {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif upper G\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"sans-serif\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathsf {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acts polarly and that the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif upper N\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"sans-serif\">N</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathsf {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-orbits can be extended to minimal Einstein submanifolds. As an application, we prove the Alekseevskii conjecture: Any homogeneous Einstein manifold with negative scalar curvature is diffeomorphic to a Euclidean space.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"23 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1022","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

For Einstein manifolds with negative scalar curvature admitting an isometric action of a Lie group G \mathsf {G} with compact, smooth orbit space, we show that the nilradical N \mathsf {N} of G \mathsf {G} acts polarly and that the N \mathsf {N} -orbits can be extended to minimal Einstein submanifolds. As an application, we prove the Alekseevskii conjecture: Any homogeneous Einstein manifold with negative scalar curvature is diffeomorphic to a Euclidean space.
对称的非紧致爱因斯坦流形
对于允许李群G \mathsf {G}具有紧致光滑轨道空间的等距作用的负标量曲率爱因斯坦流形,我们证明了G \mathsf {G}的零根N \mathsf {N}具有极作用,并且N \mathsf {N}轨道可以扩展到最小爱因斯坦子流形。作为应用,我们证明了Alekseevskii猜想:任何具有负标量曲率的齐次爱因斯坦流形对欧几里德空间都是微分同态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信