Optimization of the Process Parameters of Antibacterial Bioactive Glass/Polycaprolactone Composite Scaffold Printed by 3D Method

{"title":"Optimization of the Process Parameters of Antibacterial Bioactive Glass/Polycaprolactone Composite Scaffold Printed by 3D Method","authors":"","doi":"10.47176/jame.41.4.07155","DOIUrl":null,"url":null,"abstract":"In this study, a 3D bioactive glass composite scaffold containing 2 mol% silver/polycaprolactone (PCL) was synthesized by a 3D printer with the advantages of reproducibility and high flexibility in shape and size. The effective parameters (printer parameters, ratio of glass-phase, polymer phase, and solvent in printer ink) were determined for printing of nanocomposite scaffold by Taguchi method. Characterization of printed scaffolds was performed using X-ray diffraction, scanning electron microscope, infrared spectroscopy, bioactivity test, atomic emission spectroscopy, toxicity test, and cell proliferation. The results related to the synthesis of silver-containing bioglass by sol-gel method and heat treated at 550°C offered nanoparticles with an average diameter of less than 15 nm and a homogeneous distribution of silver in the matrix. Ratio of polymer phase to glass powder equivalent to 0.5, concentration of polymer in solvent of 50%, retraction of 1.5, and drive gear of 1200 are obtained as the optimum conditions for scaffold printing with acceptable quality (percentage, size and distribution of holes, regular structure of layers, and repeatability). The fabricated scaffold in optimal conditions revealed significant antibacterial properties, good bioactivity, acceptable cell viability, and high ALP activity. 3D printed BG/PCL nanocomposite scaffolds with macro (up to 500 µm) and micro size of holes and porosity percentage up to 64% in the structure can be a promising candidate for bone tissue engineering.","PeriodicalId":30992,"journal":{"name":"Journal of Advanced Materials in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Materials in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47176/jame.41.4.07155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a 3D bioactive glass composite scaffold containing 2 mol% silver/polycaprolactone (PCL) was synthesized by a 3D printer with the advantages of reproducibility and high flexibility in shape and size. The effective parameters (printer parameters, ratio of glass-phase, polymer phase, and solvent in printer ink) were determined for printing of nanocomposite scaffold by Taguchi method. Characterization of printed scaffolds was performed using X-ray diffraction, scanning electron microscope, infrared spectroscopy, bioactivity test, atomic emission spectroscopy, toxicity test, and cell proliferation. The results related to the synthesis of silver-containing bioglass by sol-gel method and heat treated at 550°C offered nanoparticles with an average diameter of less than 15 nm and a homogeneous distribution of silver in the matrix. Ratio of polymer phase to glass powder equivalent to 0.5, concentration of polymer in solvent of 50%, retraction of 1.5, and drive gear of 1200 are obtained as the optimum conditions for scaffold printing with acceptable quality (percentage, size and distribution of holes, regular structure of layers, and repeatability). The fabricated scaffold in optimal conditions revealed significant antibacterial properties, good bioactivity, acceptable cell viability, and high ALP activity. 3D printed BG/PCL nanocomposite scaffolds with macro (up to 500 µm) and micro size of holes and porosity percentage up to 64% in the structure can be a promising candidate for bone tissue engineering.
抗菌生物活性玻璃/聚己内酯复合支架3D打印工艺参数优化
本研究利用3D打印机合成了一种含2mol %银/聚己内酯(PCL)的3D生物活性玻璃复合支架,具有可重复性好、形状和尺寸灵活性高等优点。采用田口法确定了打印纳米复合材料支架的有效参数(打印机参数、打印油墨中玻璃相、聚合物相和溶剂的比例)。采用x射线衍射、扫描电镜、红外光谱、生物活性试验、原子发射光谱、毒性试验、细胞增殖等方法对打印支架进行表征。采用溶胶-凝胶法制备含银生物玻璃,经550℃热处理后,纳米颗粒平均直径小于15 nm,银在基体中分布均匀。聚合物相与玻璃粉的比例等于0.5,聚合物在溶剂中的浓度为50%,缩回率为1.5,驱动齿轮为1200,是支架打印质量可接受的最佳条件(孔的百分比、孔的大小和分布、层的结构规则、可重复性)。在最佳条件下制备的支架具有显著的抗菌性能、良好的生物活性、可接受的细胞活力和高碱性磷酸酶活性。3D打印的BG/PCL纳米复合材料支架具有宏观(可达500µm)和微观孔径,结构孔隙率可达64%,是骨组织工程中很有前途的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信