The spectrality of symmetric additive measures

Pub Date : 2023-05-11 DOI:10.5802/crmath.435
Wen-Hui Ai, Zheng-Yi Lu, Ting Zhou
{"title":"The spectrality of symmetric additive measures","authors":"Wen-Hui Ai, Zheng-Yi Lu, Ting Zhou","doi":"10.5802/crmath.435","DOIUrl":null,"url":null,"abstract":"where the component measure μ is the Lebesgue measure supported on [t,t+1] for t∈ℚ∖{-1 2} and δ 0 is the Dirac measure at 0. We prove that ρ is a spectral measure if and only if t∈1 2ℤ. In this case, L 2 (ρ) has a unique orthonormal basis of the form","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

where the component measure μ is the Lebesgue measure supported on [t,t+1] for t∈ℚ∖{-1 2} and δ 0 is the Dirac measure at 0. We prove that ρ is a spectral measure if and only if t∈1 2ℤ. In this case, L 2 (ρ) has a unique orthonormal basis of the form
分享
查看原文
对称加性测度的谱性
其中分量测度μ是在[t,t+1]上支持的勒贝格测度,对于t∈π {-1 2}, δ 0是0处的狄拉克测度。我们证明ρ是一个谱测度当且仅当t∈1 2n。在这种情况下,l2 (ρ)有一个唯一的标准正交基的形式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信