Ideas and perspectives: The fluctuating nature of oxygen shapes the ecology of aquatic habitats and their biogeochemical cycles – the aquatic oxyscape

IF 3.9 2区 地球科学 Q1 ECOLOGY
Marco Fusi, Sylvain Rigaud, Giovanna Guadagnin, Alberto Barausse, Ramona Marasco, Daniele Daffonchio, Julie Régis, Louison Huchet, Capucine Camin, Laura Pettit, Cristina Vina-Herbon, Folco Giomi
{"title":"Ideas and perspectives: The fluctuating nature of oxygen shapes the ecology of aquatic habitats and their biogeochemical cycles – the aquatic oxyscape","authors":"Marco Fusi, Sylvain Rigaud, Giovanna Guadagnin, Alberto Barausse, Ramona Marasco, Daniele Daffonchio, Julie Régis, Louison Huchet, Capucine Camin, Laura Pettit, Cristina Vina-Herbon, Folco Giomi","doi":"10.5194/bg-20-3509-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Oxygen availability is a pivotal factor for ecosystem functioning and the resistance of organisms to the effect of climate change in aquatic habitats. Although extensive work has been done to assess the effect of oxygen on marine and freshwater biota, many studies have not captured the ecological importance of oxygen variations. Overlooking the fluctuating nature of oxygen may cause potential biases in the design and implementation of management policies for aquatic habitats. Conceptual perspectives on the dynamic nature of oxygen fluctuations have been raised in the scientific community in order to enhance the understanding of the effect of oxygen on the physiology and the ecology of aquatic species as well as the biogeochemical functioning of their ecosystems. A growing number of empirical work has been outlining a novel conceptual framework that considers the magnitude of oxygen fluctuation as a key variable that explains adaptation to stress conditions. Oxygen in productive aquatic habitats shows large fluctuations at the diel scale, exposing aquatic species to conditions ranging from extreme supersaturation to anoxia. Recent research has indicated that such a fluctuation tunes the physiological plasticity of the animal in response to thermal stresses. In this paper, we provide compelling evidence based on current research that the fluctuating oxygen landscape, here defined as “oxyscape”, has an important role in aquatic animal physiology and adaptation as well as the ecosystem biogeochemistry. We propose that the oxyscape should be considered in the modelling and managing policies of aquatic ecosystems.","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"41 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/bg-20-3509-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Oxygen availability is a pivotal factor for ecosystem functioning and the resistance of organisms to the effect of climate change in aquatic habitats. Although extensive work has been done to assess the effect of oxygen on marine and freshwater biota, many studies have not captured the ecological importance of oxygen variations. Overlooking the fluctuating nature of oxygen may cause potential biases in the design and implementation of management policies for aquatic habitats. Conceptual perspectives on the dynamic nature of oxygen fluctuations have been raised in the scientific community in order to enhance the understanding of the effect of oxygen on the physiology and the ecology of aquatic species as well as the biogeochemical functioning of their ecosystems. A growing number of empirical work has been outlining a novel conceptual framework that considers the magnitude of oxygen fluctuation as a key variable that explains adaptation to stress conditions. Oxygen in productive aquatic habitats shows large fluctuations at the diel scale, exposing aquatic species to conditions ranging from extreme supersaturation to anoxia. Recent research has indicated that such a fluctuation tunes the physiological plasticity of the animal in response to thermal stresses. In this paper, we provide compelling evidence based on current research that the fluctuating oxygen landscape, here defined as “oxyscape”, has an important role in aquatic animal physiology and adaptation as well as the ecosystem biogeochemistry. We propose that the oxyscape should be considered in the modelling and managing policies of aquatic ecosystems.
观点和观点:氧气的波动性质塑造了水生栖息地的生态和它们的生物地球化学循环-水生氧景
摘要氧可用性是水生生境生态系统功能和生物对气候变化影响的抵抗力的关键因素。虽然已经做了大量的工作来评估氧对海洋和淡水生物群的影响,但许多研究没有捕捉到氧变化的生态重要性。忽视氧气的波动性可能会在水生生境管理政策的设计和执行中造成潜在的偏差。科学界提出了关于氧波动动态性质的概念性观点,以增进对氧对水生物种的生理和生态的影响及其生态系统的生物地球化学功能的了解。越来越多的实证工作概述了一个新的概念框架,该框架认为氧气波动的幅度是解释适应压力条件的关键变量。在生产性水生生境中,氧气在昼夜尺度上显示出巨大的波动,使水生物种暴露在从极端过饱和到缺氧的条件下。最近的研究表明,这种波动调节了动物对热应力的生理可塑性。本文在现有研究的基础上,提供了令人信服的证据,证明波动氧景观(这里定义为“氧景观”)在水生动物生理和适应以及生态系统生物地球化学中具有重要作用。我们建议在水生生态系统的建模和管理政策中应考虑到氧景观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biogeosciences
Biogeosciences 环境科学-地球科学综合
CiteScore
8.60
自引率
8.20%
发文量
258
审稿时长
4.2 months
期刊介绍: Biogeosciences (BG) is an international scientific journal dedicated to the publication and discussion of research articles, short communications and review papers on all aspects of the interactions between the biological, chemical and physical processes in terrestrial or extraterrestrial life with the geosphere, hydrosphere and atmosphere. The objective of the journal is to cut across the boundaries of established sciences and achieve an interdisciplinary view of these interactions. Experimental, conceptual and modelling approaches are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信