Hai Li , Tianyou Fan , Kun Wang , Xueyuan Long , Yu He , Meng Wang , Wen Cheng , Qian Huang , Huirong Huang , Weichao Yu
{"title":"An optimal flow rate allocation model of the oilfield treated oil pipeline network","authors":"Hai Li , Tianyou Fan , Kun Wang , Xueyuan Long , Yu He , Meng Wang , Wen Cheng , Qian Huang , Huirong Huang , Weichao Yu","doi":"10.1016/j.petlm.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Oilfield treated oil pipeline network is the link connecting the upstream oilfields and the downstream refineries. Due to the differences in operating costs and transportation fee between different pipelines and the fluctuation in the demand and sales prices of the treated oil, there is an optimal flow allocation plan for the pipeline network to make the oilfield company obtain the highest social and economic benefit. In this study, a mixed integer nonlinear programming (MINLP) model is developed to determine the optimal flow rate allocation plan of the large-scale and complex treated oil pipeline network, and both the social and economic benefits are considered simultaneously. The optimization objective is the multi-objective which includes the largest user satisfaction and the highest economic benefit. The model constraints include the oilfield production capacity, refinery demand, pipeline transmission capacity, flow, pressure, and temperature of the node and station, and the pipeline hydraulic and thermal calculations. Python 3.7 is utilized for the programming of the off-line calculation procedure and the MINLP model, and GUROBI 9.0.2 is served as the MINLP solver. Moreover, the model is applied to a real treated oil pipeline network located in China, and three optimization scenarios are analyzed. For social benefit, the values of the user satisfaction of each refinery and the total network are 1 before and after optimization for scenarios 1, 2, and 3. For economic benefit, the annual revenue can be increased by 0.227, 0.293, and 0.548 billion yuan after the optimization in scenario 1, 2, and 3, respectively.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 1","pages":"Pages 93-100"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S240565612300072X/pdfft?md5=a214c937ff250836c57ed02ca22c0bf6&pid=1-s2.0-S240565612300072X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240565612300072X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Oilfield treated oil pipeline network is the link connecting the upstream oilfields and the downstream refineries. Due to the differences in operating costs and transportation fee between different pipelines and the fluctuation in the demand and sales prices of the treated oil, there is an optimal flow allocation plan for the pipeline network to make the oilfield company obtain the highest social and economic benefit. In this study, a mixed integer nonlinear programming (MINLP) model is developed to determine the optimal flow rate allocation plan of the large-scale and complex treated oil pipeline network, and both the social and economic benefits are considered simultaneously. The optimization objective is the multi-objective which includes the largest user satisfaction and the highest economic benefit. The model constraints include the oilfield production capacity, refinery demand, pipeline transmission capacity, flow, pressure, and temperature of the node and station, and the pipeline hydraulic and thermal calculations. Python 3.7 is utilized for the programming of the off-line calculation procedure and the MINLP model, and GUROBI 9.0.2 is served as the MINLP solver. Moreover, the model is applied to a real treated oil pipeline network located in China, and three optimization scenarios are analyzed. For social benefit, the values of the user satisfaction of each refinery and the total network are 1 before and after optimization for scenarios 1, 2, and 3. For economic benefit, the annual revenue can be increased by 0.227, 0.293, and 0.548 billion yuan after the optimization in scenario 1, 2, and 3, respectively.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing