{"title":"Analyzing the interest rate risk of equity-indexed annuities via scenario matrices","authors":"Sascha Günther, Peter Hieber","doi":"10.1016/j.insmatheco.2023.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>The financial return of equity-indexed annuities depends on an underlying fund or investment portfolio complemented by an investment guarantee. We discuss a so-called cliquet-style or ratchet-type guarantee granting a minimum annual return. Its path-dependent payoff complicates valuation and risk management, especially if interest rates are modelled stochastically. We develop a novel scenario-matrix (SM) method. In the example of a Vasicek-Black-Scholes model, we derive closed-form expressions for the value and moment-generating function of the final payoff in terms of the scenario matrix. This allows efficient evaluation of values and various risk measures, avoiding Monte-Carlo simulation or numerical Fourier inversion. In numerical tests, this procedure proves to converge quickly and outperforms the existing approaches in the literature in terms of computation time and accuracy.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"114 ","pages":"Pages 15-28"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167668723000884/pdfft?md5=eb62819e6a8fba972fe783e25593770a&pid=1-s2.0-S0167668723000884-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668723000884","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The financial return of equity-indexed annuities depends on an underlying fund or investment portfolio complemented by an investment guarantee. We discuss a so-called cliquet-style or ratchet-type guarantee granting a minimum annual return. Its path-dependent payoff complicates valuation and risk management, especially if interest rates are modelled stochastically. We develop a novel scenario-matrix (SM) method. In the example of a Vasicek-Black-Scholes model, we derive closed-form expressions for the value and moment-generating function of the final payoff in terms of the scenario matrix. This allows efficient evaluation of values and various risk measures, avoiding Monte-Carlo simulation or numerical Fourier inversion. In numerical tests, this procedure proves to converge quickly and outperforms the existing approaches in the literature in terms of computation time and accuracy.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.