A generalizable electrocardiogram-based artificial intelligence model for 10-year heart failure risk prediction

IF 2.6 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Liam Butler PhD , Ibrahim Karabayir PhD , Dalane W. Kitzman MD , Alvaro Alonso MD, PhD , Geoffrey H. Tison MD, MPH , Lin Yee Chen MD, MS , Patricia P. Chang MD, MHS , Gari Clifford PhD , Elsayed Z. Soliman MD, MS , Oguz Akbilgic DBA, PhD
{"title":"A generalizable electrocardiogram-based artificial intelligence model for 10-year heart failure risk prediction","authors":"Liam Butler PhD ,&nbsp;Ibrahim Karabayir PhD ,&nbsp;Dalane W. Kitzman MD ,&nbsp;Alvaro Alonso MD, PhD ,&nbsp;Geoffrey H. Tison MD, MPH ,&nbsp;Lin Yee Chen MD, MS ,&nbsp;Patricia P. Chang MD, MHS ,&nbsp;Gari Clifford PhD ,&nbsp;Elsayed Z. Soliman MD, MS ,&nbsp;Oguz Akbilgic DBA, PhD","doi":"10.1016/j.cvdhj.2023.11.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Heart failure (HF) is a progressive condition with high global incidence. HF has two main subtypes: HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF). There is an inherent need for simple yet effective electrocardiogram (ECG)-based artificial intelligence (AI; ECG-AI) models that can predict HF risk early to allow for risk modification.</p></div><div><h3>Objective</h3><p>The main objectives were to validate HF risk prediction models using Multi-Ethnic Study of Atherosclerosis (MESA) data and assess performance on HFpEF and HFrEF classification.</p></div><div><h3>Methods</h3><p>There were six models in comparision derived using ARIC data. 1) The ECG-AI model predicting HF risk was developed using raw 12-lead ECGs with a convolutional neural network. The clinical models from 2) ARIC (ARIC-HF) and 3) Framingham Heart Study (FHS-HF) used 9 and 8 variables, respectively. 4) Cox proportional hazards (CPH) model developed using the clinical risk factors in ARIC-HF or FHS-HF. 5) CPH model using the outcome of ECG-AI and the clinical risk factors used in CPH model (ECG-AI-Cox) and 6) A Light Gradient Boosting Machine model using 288 ECG Characteristics (ECG-Chars). All the models were validated on MESA. The performances of these models were evaluated using the area under the receiver operating characteristic curve (AUC) and compared using the DeLong test.</p></div><div><h3>Results</h3><p>ECG-AI, ECG-Chars, and ECG-AI-Cox resulted in validation AUCs of 0.77, 0.73, and 0.84, respectively. ARIC-HF and FHS-HF yielded AUCs of 0.76 and 0.74, respectively, and CPH resulted in AUC = 0.78. ECG-AI-Cox outperformed all other models. ECG-AI-Cox provided an AUC of 0.85 for HFrEF and 0.83 for HFpEF.</p></div><div><h3>Conclusion</h3><p>ECG-AI using ECGs provides better-validated predictions when compared to HF risk calculators, and the ECG feature model and also works well with HFpEF and HFrEF classification.</p></div>","PeriodicalId":72527,"journal":{"name":"Cardiovascular digital health journal","volume":"4 6","pages":"Pages 183-190"},"PeriodicalIF":2.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666693623000762/pdfft?md5=8ef34da86fd7e31cf9150c7011f22cef&pid=1-s2.0-S2666693623000762-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular digital health journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666693623000762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Heart failure (HF) is a progressive condition with high global incidence. HF has two main subtypes: HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF). There is an inherent need for simple yet effective electrocardiogram (ECG)-based artificial intelligence (AI; ECG-AI) models that can predict HF risk early to allow for risk modification.

Objective

The main objectives were to validate HF risk prediction models using Multi-Ethnic Study of Atherosclerosis (MESA) data and assess performance on HFpEF and HFrEF classification.

Methods

There were six models in comparision derived using ARIC data. 1) The ECG-AI model predicting HF risk was developed using raw 12-lead ECGs with a convolutional neural network. The clinical models from 2) ARIC (ARIC-HF) and 3) Framingham Heart Study (FHS-HF) used 9 and 8 variables, respectively. 4) Cox proportional hazards (CPH) model developed using the clinical risk factors in ARIC-HF or FHS-HF. 5) CPH model using the outcome of ECG-AI and the clinical risk factors used in CPH model (ECG-AI-Cox) and 6) A Light Gradient Boosting Machine model using 288 ECG Characteristics (ECG-Chars). All the models were validated on MESA. The performances of these models were evaluated using the area under the receiver operating characteristic curve (AUC) and compared using the DeLong test.

Results

ECG-AI, ECG-Chars, and ECG-AI-Cox resulted in validation AUCs of 0.77, 0.73, and 0.84, respectively. ARIC-HF and FHS-HF yielded AUCs of 0.76 and 0.74, respectively, and CPH resulted in AUC = 0.78. ECG-AI-Cox outperformed all other models. ECG-AI-Cox provided an AUC of 0.85 for HFrEF and 0.83 for HFpEF.

Conclusion

ECG-AI using ECGs provides better-validated predictions when compared to HF risk calculators, and the ECG feature model and also works well with HFpEF and HFrEF classification.

Abstract Image

基于心电图的人工智能十年心衰风险预测通用模型
背景心力衰竭(HF)是一种进展性疾病,全球发病率很高。心力衰竭主要有两种亚型:射血分数保留型心力衰竭(HFpEF)和射血分数降低型心力衰竭(HFrEF)。目标主要目的是利用多种族动脉粥样硬化研究(MESA)数据验证心房颤动风险预测模型,并评估 HFpEF 和 HFrEF 分类的性能。1)预测 HF 风险的 ECG-AI 模型是利用原始 12 导联 ECG 和卷积神经网络开发的。2)ARIC(ARIC-HF)和 3)弗雷明汉心脏研究(FHS-HF)的临床模型分别使用了 9 个和 8 个变量。4) 利用 ARIC-HF 或 FHS-HF 的临床风险因素建立的 Cox 比例危险(CPH)模型。5)使用 ECG-AI 结果和 CPH 模型中使用的临床风险因素的 CPH 模型(ECG-AI-Cox);6)使用 288 个心电图特征的轻梯度提升机模型(ECG-Chars)。所有模型都在 MESA 上进行了验证。结果ECG-AI、ECG-Chars 和 ECG-AI-Cox 的验证 AUC 分别为 0.77、0.73 和 0.84。ARIC-HF 和 FHS-HF 的 AUC 分别为 0.76 和 0.74,CPH 的 AUC = 0.78。ECG-AI-Cox 的表现优于所有其他模型。ECG-AI-Cox为HFrEF提供的AUC为0.85,为HFpEF提供的AUC为0.83。结论与HF风险计算器和心电图特征模型相比,使用心电图的ECG-AI能提供更好的验证预测结果,而且在HFpEF和HFrEF分类中效果也很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular digital health journal
Cardiovascular digital health journal Cardiology and Cardiovascular Medicine
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
58 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信