Linjin Shi, Mengjiao Qu, Dongze Lv, Weiting Liu, Jin Xie
{"title":"A Two-channel Ultrasonic Flowmeter Based on AlN Piezoelectric Micromachined Ultrasonic Transducers Arrays with Improved Cross-correlation Method","authors":"Linjin Shi, Mengjiao Qu, Dongze Lv, Weiting Liu, Jin Xie","doi":"10.1088/1361-6439/ad0307","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a highly accurate two-channel ultrasonic flowmeter based on AlN piezoelectric micromachined ultrasonic transducers (PMUTs) to measure flow rate in small-diameter pipes (9.6 mm). The ultrasonic transducers consist of four 10 by 10 PMUTs arrays with resonant frequency of 1 MHz in air. The ultrasonic transducers are excited by continuous sine voltage, and the transmitted and received signals are subjected to cross-correlation operation to obtain the time delay of the ultrasonic wave in the liquid. A dual-channel design of the flowmeter can reduce measurement errors by taking the average value. To reduce errors in the cross-correlation operation, an iterative algorithm is proposed, which effectively improves the measurement accuracy. The flowmeter is evaluated in flow range of 3.5–10 l min −1 , and has a small relative error of 0.7%.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"72 5","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad0307","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper presents a highly accurate two-channel ultrasonic flowmeter based on AlN piezoelectric micromachined ultrasonic transducers (PMUTs) to measure flow rate in small-diameter pipes (9.6 mm). The ultrasonic transducers consist of four 10 by 10 PMUTs arrays with resonant frequency of 1 MHz in air. The ultrasonic transducers are excited by continuous sine voltage, and the transmitted and received signals are subjected to cross-correlation operation to obtain the time delay of the ultrasonic wave in the liquid. A dual-channel design of the flowmeter can reduce measurement errors by taking the average value. To reduce errors in the cross-correlation operation, an iterative algorithm is proposed, which effectively improves the measurement accuracy. The flowmeter is evaluated in flow range of 3.5–10 l min −1 , and has a small relative error of 0.7%.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.