Spectra of Zero-Divisor Graphs of Finite Reduced Rings

IF 0.5 3区 数学 Q3 MATHEMATICS
Gahininath Sonawane, Ganesh S. Kadu, Y. M. Borse
{"title":"Spectra of Zero-Divisor Graphs of Finite Reduced Rings","authors":"Gahininath Sonawane, Ganesh S. Kadu, Y. M. Borse","doi":"10.1142/s0219498825500823","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a finite reduced ring with [Formula: see text] maximal ideals [Formula: see text] and let [Formula: see text] be the zero-divisor graph associated to [Formula: see text] The class of rings [Formula: see text] contains the Boolean rings as a subclass. When [Formula: see text] for all [Formula: see text] where [Formula: see text] is a finite field, we associate two [Formula: see text] sized matrices [Formula: see text] and [Formula: see text] to the graph [Formula: see text] having combinatorial entries and use these matrices to determine the spectrum of this graph. More precisely, we show that every eigenvalue of [Formula: see text] and of [Formula: see text] is an eigenvalue of [Formula: see text] To do this, we give a recursive description of the adjacency matrix of this graph and also exhibit its equitable partition. This is used in computing the determinant, rank and nullity of the adjacency matrix. Further, we propose that the eigenvalues of [Formula: see text] [Formula: see text] and the eigenvalue [Formula: see text] exhaust all the eigenvalues of [Formula: see text]","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":"15 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498825500823","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be a finite reduced ring with [Formula: see text] maximal ideals [Formula: see text] and let [Formula: see text] be the zero-divisor graph associated to [Formula: see text] The class of rings [Formula: see text] contains the Boolean rings as a subclass. When [Formula: see text] for all [Formula: see text] where [Formula: see text] is a finite field, we associate two [Formula: see text] sized matrices [Formula: see text] and [Formula: see text] to the graph [Formula: see text] having combinatorial entries and use these matrices to determine the spectrum of this graph. More precisely, we show that every eigenvalue of [Formula: see text] and of [Formula: see text] is an eigenvalue of [Formula: see text] To do this, we give a recursive description of the adjacency matrix of this graph and also exhibit its equitable partition. This is used in computing the determinant, rank and nullity of the adjacency matrix. Further, we propose that the eigenvalues of [Formula: see text] [Formula: see text] and the eigenvalue [Formula: see text] exhaust all the eigenvalues of [Formula: see text]
有限约简环的零因子图的谱
设[公式:见文]是一个具有[公式:见文]极大理想的有限约简环[公式:见文],设[公式:见文]是与[公式:见文]相关的零因子图。环类[公式:见文]包含布尔环作为子类。当[公式:见文]对于所有[公式:见文],其中[公式:见文]是一个有限域时,我们将两个[公式:见文]大小的矩阵[公式:见文]和[公式:见文]与具有组合条目的图[公式:见文]联系起来,并使用这些矩阵来确定这个图的频谱。更准确地说,我们证明了[公式:见文]和[公式:见文]的每个特征值都是[公式:见文]的一个特征值。为此,我们给出了这个图的邻接矩阵的递归描述,并展示了它的公平划分。这用于计算邻接矩阵的行列式、秩和零。进一步,我们提出[公式:见文][公式:见文]的特征值[公式:见文]和特征值[公式:见文]耗尽了[公式:见文]的所有特征值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
226
审稿时长
4-8 weeks
期刊介绍: The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信