{"title":"Optimization over the Pareto front of nonconvex multi-objective optimal control problems","authors":"C. Yalçın Kaya, Helmut Maurer","doi":"10.1007/s10589-023-00535-7","DOIUrl":null,"url":null,"abstract":"Abstract Simultaneous optimization of multiple objective functions results in a set of trade-off, or Pareto, solutions. Choosing a, in some sense, best solution in this set is in general a challenging task: In the case of three or more objectives the Pareto front is usually difficult to view, if not impossible, and even in the case of just two objectives constructing the whole Pareto front so as to visually inspect it might be very costly. Therefore, optimization over the Pareto (or efficient) set has been an active area of research. Although there is a wealth of literature involving finite dimensional optimization problems in this area, there is a lack of problem formulation and numerical methods for optimal control problems, except for the convex case. In this paper, we formulate the problem of optimizing over the Pareto front of nonconvex constrained and time-delayed optimal control problems as a bi-level optimization problem. Motivated by existing solution differentiability results, we propose an algorithm incorporating (i) the Chebyshev scalarization, (ii) a concept of the essential interval of weights, and (iii) the simple but effective bisection method, for optimal control problems with two objectives. We illustrate the working of the algorithm on two example problems involving an electric circuit and treatment of tuberculosis and discuss future lines of research for new computational methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10589-023-00535-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Simultaneous optimization of multiple objective functions results in a set of trade-off, or Pareto, solutions. Choosing a, in some sense, best solution in this set is in general a challenging task: In the case of three or more objectives the Pareto front is usually difficult to view, if not impossible, and even in the case of just two objectives constructing the whole Pareto front so as to visually inspect it might be very costly. Therefore, optimization over the Pareto (or efficient) set has been an active area of research. Although there is a wealth of literature involving finite dimensional optimization problems in this area, there is a lack of problem formulation and numerical methods for optimal control problems, except for the convex case. In this paper, we formulate the problem of optimizing over the Pareto front of nonconvex constrained and time-delayed optimal control problems as a bi-level optimization problem. Motivated by existing solution differentiability results, we propose an algorithm incorporating (i) the Chebyshev scalarization, (ii) a concept of the essential interval of weights, and (iii) the simple but effective bisection method, for optimal control problems with two objectives. We illustrate the working of the algorithm on two example problems involving an electric circuit and treatment of tuberculosis and discuss future lines of research for new computational methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.