Investigation of New Solitary Wave Solutions of the Gilson-Pickering Equation Using Advanced Computational Techniques

IF 3.3 3区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. M. Abelazeem, Raghda A. M. Attia
{"title":"Investigation of New Solitary Wave Solutions of the Gilson-Pickering Equation Using Advanced Computational Techniques","authors":"M. M. Abelazeem, Raghda A. M. Attia","doi":"10.1142/s0218348x2340203x","DOIUrl":null,"url":null,"abstract":"This study focuses on employing recent and accurate computational techniques, specifically the Sardar-sub equation [Formula: see text] method, to explore novel solitary wave solutions of the Gilson–Pickering [Formula: see text] equation. The GP equation is a mathematical model with implications in fluid dynamics and wave phenomena. It describes the behavior of solitary waves, which are localized disturbances propagating through a medium without changing shape. The physical significance of the [Formula: see text] equation lies in its ability to capture the dynamics of solitary waves in various systems, including water waves, optical fibers, and nonlinear acoustic waves. The study’s findings contribute to the advancement of mathematical modeling approaches and offer valuable insights into solitary wave phenomena. The stability of the constructed solutions is investigated using the properties of the Hamiltonian system. The accuracy of the computational solutions is demonstrated by comparing them with approximate solutions obtained through He’s variational iteration [Formula: see text] method. Furthermore, the effectiveness of the employed computational techniques is validated through comparisons with other existing methods.","PeriodicalId":55144,"journal":{"name":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","volume":"21 3-4","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x2340203x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on employing recent and accurate computational techniques, specifically the Sardar-sub equation [Formula: see text] method, to explore novel solitary wave solutions of the Gilson–Pickering [Formula: see text] equation. The GP equation is a mathematical model with implications in fluid dynamics and wave phenomena. It describes the behavior of solitary waves, which are localized disturbances propagating through a medium without changing shape. The physical significance of the [Formula: see text] equation lies in its ability to capture the dynamics of solitary waves in various systems, including water waves, optical fibers, and nonlinear acoustic waves. The study’s findings contribute to the advancement of mathematical modeling approaches and offer valuable insights into solitary wave phenomena. The stability of the constructed solutions is investigated using the properties of the Hamiltonian system. The accuracy of the computational solutions is demonstrated by comparing them with approximate solutions obtained through He’s variational iteration [Formula: see text] method. Furthermore, the effectiveness of the employed computational techniques is validated through comparisons with other existing methods.
利用先进的计算技术研究Gilson-Pickering方程的新孤波解
本研究的重点是采用最新的精确计算技术,特别是Sardar-sub方程[公式:见文本]方法,探索Gilson-Pickering[公式:见文本]方程的新颖孤波解。GP方程是一个涉及流体力学和波动现象的数学模型。它描述了孤波的行为,孤波是通过介质传播而不改变形状的局部扰动。[公式:见文本]方程的物理意义在于它能够捕捉各种系统中孤波的动力学,包括水波、光纤和非线性声波。这项研究的发现有助于数学建模方法的进步,并为孤立波现象提供了有价值的见解。利用哈密顿系统的性质研究了构造解的稳定性。通过与何氏变分迭代法[公式:见文]近似解的比较,证明了计算解的准确性。此外,通过与其他现有方法的比较,验证了所采用计算技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
23.40%
发文量
319
审稿时长
>12 weeks
期刊介绍: The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes. Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality. The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信