Nilesh Ashok Kharat, Ankit Agarwal, Tyler Grimm, Laine Mears
{"title":"Investigation of stochastic toolpath strategy in three-axis ball-end milling of 2D and free-form surfaces","authors":"Nilesh Ashok Kharat, Ankit Agarwal, Tyler Grimm, Laine Mears","doi":"10.1177/09544054231202386","DOIUrl":null,"url":null,"abstract":"The machining of free-form components by ball-end milling inherently produces surface error in the form of scallops. The objective of any free-form toolpath strategy is to balance productivity while minimizing scallop height to reduce surface error. Conventional machining strategies produce repeatable material patterns (constant scallop height) that may limit workpiece function in areas such as lubricity, directional anisotropy, and aesthetic appearance. These strategies also involve steady-state cuts, which allow accumulation of temperature, restrict the permissible depth and speed. In the present paper a novel complex stochastic toolpath strategy has been proposed that comprises pseudo-random circular contours concatenated into a smooth path. The approach enables continuous variation of chip load, force, and direction, and avoids conditions of continuous, periodic high cutting loads and heat accumulation. Based on initial testing, it has been observed that stochastic toolpaths are longer than conventional toolpaths. However, a decrease in average cutting loads enable reduction in cutting time with feed optimization. Additionally, the proposed strategy resulted in lower scallop height than conventional machining, thereby improving surface condition.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"28 4","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544054231202386","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The machining of free-form components by ball-end milling inherently produces surface error in the form of scallops. The objective of any free-form toolpath strategy is to balance productivity while minimizing scallop height to reduce surface error. Conventional machining strategies produce repeatable material patterns (constant scallop height) that may limit workpiece function in areas such as lubricity, directional anisotropy, and aesthetic appearance. These strategies also involve steady-state cuts, which allow accumulation of temperature, restrict the permissible depth and speed. In the present paper a novel complex stochastic toolpath strategy has been proposed that comprises pseudo-random circular contours concatenated into a smooth path. The approach enables continuous variation of chip load, force, and direction, and avoids conditions of continuous, periodic high cutting loads and heat accumulation. Based on initial testing, it has been observed that stochastic toolpaths are longer than conventional toolpaths. However, a decrease in average cutting loads enable reduction in cutting time with feed optimization. Additionally, the proposed strategy resulted in lower scallop height than conventional machining, thereby improving surface condition.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.