OTIMIZAÇÃO DE CARTEIRAS COM RETORNOS NÃO GAUSSIANOS: UMA ABORDAGEM BAYESIANA

Lizeth Jacquelin Rodriguez Huarsaya, Luiz Eduardo Teixeira Brandão, Javier Gutiérrez Castro, Edison Americo Huarsaya Tito
{"title":"OTIMIZAÇÃO DE CARTEIRAS COM RETORNOS NÃO GAUSSIANOS: UMA ABORDAGEM BAYESIANA","authors":"Lizeth Jacquelin Rodriguez Huarsaya, Luiz Eduardo Teixeira Brandão, Javier Gutiérrez Castro, Edison Americo Huarsaya Tito","doi":"10.12957/cadest.2023.79151","DOIUrl":null,"url":null,"abstract":"A teoria moderna de carteiras estabelece que a alocação ótima de ativos é uma função da média-variância da distribuição dos retornos. Geralmente, assume-se que esses retornos seguem uma distribuição Gaussiana, estimada a partir de dados históricos usando métodos da estatística frequentista. Entretanto, a dinâmica atual dos mercados globalizados pode provocar mudanças de regime ou quebras estruturais na série temporal dos retornos, tornando-os não Gaussianos. Para lidar com o problema das mudanças de regime, propõe-se substituir o mecanismo de otimização baseado no índice de Sharpe pela otimização baseada na medida Ômega. Isto porque a medida Ômega tem a vantagem de quantificar o risco-retorno de qualquer distribuição de probabilidade, não se restringindo à média-variância como acontece com o índice de Sharpe, solucionando assim o problema das mudanças de regime. Para lidar com o problema das quebras estruturais, propõe-se substituir o procedimento de estimação dos parâmetros da distribuição dos retornos, que se baseia em técnicas da estatística frequentista por técnicas da estatística Bayesiana. A estatística Bayesiana, tem a vantagem de combinar as informações públicas do mercado (dados históricos dos retornos) com informações privadas do investidor (visões prospectivas do mercado) permitindo corrigir o problema das quebras estruturais.","PeriodicalId":30267,"journal":{"name":"Cadernos do IME Serie Estatistica","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cadernos do IME Serie Estatistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12957/cadest.2023.79151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A teoria moderna de carteiras estabelece que a alocação ótima de ativos é uma função da média-variância da distribuição dos retornos. Geralmente, assume-se que esses retornos seguem uma distribuição Gaussiana, estimada a partir de dados históricos usando métodos da estatística frequentista. Entretanto, a dinâmica atual dos mercados globalizados pode provocar mudanças de regime ou quebras estruturais na série temporal dos retornos, tornando-os não Gaussianos. Para lidar com o problema das mudanças de regime, propõe-se substituir o mecanismo de otimização baseado no índice de Sharpe pela otimização baseada na medida Ômega. Isto porque a medida Ômega tem a vantagem de quantificar o risco-retorno de qualquer distribuição de probabilidade, não se restringindo à média-variância como acontece com o índice de Sharpe, solucionando assim o problema das mudanças de regime. Para lidar com o problema das quebras estruturais, propõe-se substituir o procedimento de estimação dos parâmetros da distribuição dos retornos, que se baseia em técnicas da estatística frequentista por técnicas da estatística Bayesiana. A estatística Bayesiana, tem a vantagem de combinar as informações públicas do mercado (dados históricos dos retornos) com informações privadas do investidor (visões prospectivas do mercado) permitindo corrigir o problema das quebras estruturais.
非高斯回报投资组合优化:贝叶斯方法
现代投资组合理论认为,最优资产配置是收益分布的平均方差函数。一般假设这些回报遵循高斯分布,使用频率统计方法从历史数据估计。然而,当前全球化市场的动态可能导致收益时间序列的体制变化或结构性中断,使其非高斯。为了解决状态变化问题,提出将基于夏普指数的优化机制替换为基于omega测度的优化机制。这是因为omega度量具有量化任何概率分布的风险回报的优势,而不像夏普指数那样局限于均值方差,从而解决了状态变化问题。为了解决结构断裂问题,我们提出用贝叶斯统计技术代替基于频率统计技术的收益分布参数估计程序。贝叶斯统计具有将公开市场信息(历史回报数据)与私人投资者信息(市场前景)相结合的优势,可以纠正结构性崩溃问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
3
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信