New Fixed Point Theorems for θ ω Contraction on λ , μ -Generalized Metric Spaces

IF 1.9 3区 数学 Q1 MATHEMATICS
Abdelkarim Kari, Ahmed Al-Rawashdeh
{"title":"New Fixed Point Theorems for <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mi>θ</mi> <mo>−</mo> <mi>ω</mi> <mo>−</mo> </math>Contraction on <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <mfenced open=\"(\" close=\")\"> <mrow> <mi>λ</mi> <mo>,</mo> <mi>μ</mi> </mrow> </mfenced> </math>-Generalized Metric Spaces","authors":"Abdelkarim Kari, Ahmed Al-Rawashdeh","doi":"10.1155/2023/8069112","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a new extension of the Banach contraction principle, which is called the <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <mi>θ</mi> <mo>−</mo> <mi>ω</mi> <mo>−</mo> </math> contraction inspired by the concept of <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <mi>θ</mi> <mo>−</mo> </math> contraction in <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"> <mfenced open=\"(\" close=\")\"> <mrow> <mi>λ</mi> <mo>,</mo> <mi>μ</mi> </mrow> </mfenced> </math> -generalized metric spaces and to study the existence and uniqueness of fixed point for the mappings in metric space. Moreover, we discuss some illustrative examples to highlight the improvements that were made, and we also give an iterated application of linear integral equations.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"8 4","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8069112","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a new extension of the Banach contraction principle, which is called the θ ω contraction inspired by the concept of θ contraction in λ , μ -generalized metric spaces and to study the existence and uniqueness of fixed point for the mappings in metric space. Moreover, we discuss some illustrative examples to highlight the improvements that were made, and we also give an iterated application of linear integral equations.
λ, μ -广义度量空间上θ−ω−收缩的新不动点定理
本文从λ, μ -广义度量空间中θ -收缩的概念出发,考虑了Banach收缩原理的一个新的推广,即θ - ω -收缩,并研究了映射在度量空间中不动点的存在唯一性。此外,我们讨论了一些说明性的例子来突出所做的改进,我们也给出了线性积分方程的迭代应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Function Spaces
Journal of Function Spaces MATHEMATICS, APPLIEDMATHEMATICS -MATHEMATICS
CiteScore
4.10
自引率
10.50%
发文量
451
审稿时长
15 weeks
期刊介绍: Journal of Function Spaces (formerly titled Journal of Function Spaces and Applications) publishes papers on all aspects of function spaces, functional analysis, and their employment across other mathematical disciplines. As well as original research, Journal of Function Spaces also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信