{"title":"Certain invertible operator-block matrices induced by $$C^{*}$$-algebras and scaled hypercomplex numbers","authors":"Daniel Alpay, Ilwoo Cho","doi":"10.1007/s40687-023-00411-0","DOIUrl":null,"url":null,"abstract":"Abstract The main purposes of this paper are (i) to enlarge scaled hypercomplex structures to operator-valued cases, where the operators are taken from a $$C^{*}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> </mml:math> -subalgebra of an operator algebra on a separable Hilbert space, (ii) to characterize the invertibility conditions on the operator-valued scaled-hypercomplex structures of (i), (iii) to study relations between the invertibility of scaled hypercomplex numbers, and that of operator-valued cases of (ii), and (iv) to confirm our invertibility of (ii) and (iii) are equivalent to the general invertibility of $$\\left( 2\\times 2\\right) $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mfenced> <mml:mn>2</mml:mn> <mml:mo>×</mml:mo> <mml:mn>2</mml:mn> </mml:mfenced> </mml:math> -block operator matrices.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40687-023-00411-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The main purposes of this paper are (i) to enlarge scaled hypercomplex structures to operator-valued cases, where the operators are taken from a $$C^{*}$$ C∗ -subalgebra of an operator algebra on a separable Hilbert space, (ii) to characterize the invertibility conditions on the operator-valued scaled-hypercomplex structures of (i), (iii) to study relations between the invertibility of scaled hypercomplex numbers, and that of operator-valued cases of (ii), and (iv) to confirm our invertibility of (ii) and (iii) are equivalent to the general invertibility of $$\left( 2\times 2\right) $$ 2×2 -block operator matrices.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.