Certain invertible operator-block matrices induced by $$C^{*}$$-algebras and scaled hypercomplex numbers

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Daniel Alpay, Ilwoo Cho
{"title":"Certain invertible operator-block matrices induced by $$C^{*}$$-algebras and scaled hypercomplex numbers","authors":"Daniel Alpay, Ilwoo Cho","doi":"10.1007/s40687-023-00411-0","DOIUrl":null,"url":null,"abstract":"Abstract The main purposes of this paper are (i) to enlarge scaled hypercomplex structures to operator-valued cases, where the operators are taken from a $$C^{*}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> </mml:math> -subalgebra of an operator algebra on a separable Hilbert space, (ii) to characterize the invertibility conditions on the operator-valued scaled-hypercomplex structures of (i), (iii) to study relations between the invertibility of scaled hypercomplex numbers, and that of operator-valued cases of (ii), and (iv) to confirm our invertibility of (ii) and (iii) are equivalent to the general invertibility of $$\\left( 2\\times 2\\right) $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mfenced> <mml:mn>2</mml:mn> <mml:mo>×</mml:mo> <mml:mn>2</mml:mn> </mml:mfenced> </mml:math> -block operator matrices.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40687-023-00411-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The main purposes of this paper are (i) to enlarge scaled hypercomplex structures to operator-valued cases, where the operators are taken from a $$C^{*}$$ C -subalgebra of an operator algebra on a separable Hilbert space, (ii) to characterize the invertibility conditions on the operator-valued scaled-hypercomplex structures of (i), (iii) to study relations between the invertibility of scaled hypercomplex numbers, and that of operator-valued cases of (ii), and (iv) to confirm our invertibility of (ii) and (iii) are equivalent to the general invertibility of $$\left( 2\times 2\right) $$ 2 × 2 -block operator matrices.
由$$C^{*}$$ -代数和标度超复数导出的可逆算子块矩阵
摘要本文的主要目的是:(i)将尺度超复结构推广到算子值情况,其中算子值取自可分Hilbert空间上算子代数的$$C^{*}$$ C * -子代数;(ii)刻画了(i)的算子值尺度超复结构的可逆性条件;(iii)研究了(ii)的尺度超复数的可逆性与(ii)的算子值情况的可逆性之间的关系。并且(iv)证实了(ii)和(iii)的可逆性等价于$$\left( 2\times 2\right) $$ 2 × 2块算子矩阵的一般可逆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信