Alcyn R. Bakkang, Regimar A. Rasid, Rosalio G. Artes
{"title":"COMBINATORIAL APPROACH IN COUNTING THE NEIGHBORS OF CLIQUES IN A GRAPH","authors":"Alcyn R. Bakkang, Regimar A. Rasid, Rosalio G. Artes","doi":"10.17654/0974165823063","DOIUrl":null,"url":null,"abstract":"Let $G$ be a simple connected graph. Then an $i$-subset of $V(G)$ is a subset of $V(G)$ of cardinality $i$. An $i$-clique is an $i$-subset which induces a complete subgraph of $G$. The clique neighborhood polynomial of $G$ is given by $c n(G ; x, y)=\\sum_{j=0}^{n-i} \\sum_{i=1}^{\\omega(G)} c_{i j}(G) x^i y^j$, where $c_{i j}(G)$ is the number of $i$-cliques in $G$ with neighborhood cardinality equal to $j$ and $\\omega(G)$ is the cardinality of a maximum clique in $G$, called the clique number of $G$. In this paper, we obtain the clique neighborhood polynomials of the special graphs such as the complete graph, complete bipartite graph and complete $q$-partite graph using combinatorial approach. Received: September 14, 2023Accepted: October 9, 2023","PeriodicalId":40868,"journal":{"name":"Advances and Applications in Discrete Mathematics","volume":"9 3","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0974165823063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $G$ be a simple connected graph. Then an $i$-subset of $V(G)$ is a subset of $V(G)$ of cardinality $i$. An $i$-clique is an $i$-subset which induces a complete subgraph of $G$. The clique neighborhood polynomial of $G$ is given by $c n(G ; x, y)=\sum_{j=0}^{n-i} \sum_{i=1}^{\omega(G)} c_{i j}(G) x^i y^j$, where $c_{i j}(G)$ is the number of $i$-cliques in $G$ with neighborhood cardinality equal to $j$ and $\omega(G)$ is the cardinality of a maximum clique in $G$, called the clique number of $G$. In this paper, we obtain the clique neighborhood polynomials of the special graphs such as the complete graph, complete bipartite graph and complete $q$-partite graph using combinatorial approach. Received: September 14, 2023Accepted: October 9, 2023