{"title":"Utilizing Unmanned Aerial Vehicles (UAVs) for Earthwork Fill Height Determination in Road Construction","authors":"","doi":"10.52939/ijg.v19i9.2877","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicle (UAV) was utilized to determine fill height of earthwork construction project along a local road kilometer 16+675 to kilometer 17+275 in Nongthalay subdistrict, Muang district, Krabi province. The data processing was conducted on PIX4D and the heights were measured from point cloud generated from the UAV using QGIS software. The study compared elevation profiles obtained from UAV point cloud data with conventional leveling methods in the road construction project. The results revealed that elevation differences between the two methods ranged from 0.068 to 0.651 meter, with an average difference of 0.327 meter and a percentage difference of 1.06%. These differences exceeded the allowable error threshold of 0.010 meter recommended for leveling class III in road construction specifications. Consequently, the use of UAV technology for leveling in this scenario is questioned due to the significant disparities observed compared to conventional survey methods. Nevertheless, the accuracy of this method can be improved through strategies such as the integration of additional GCPs to enhance georeferencing precision, meticulous camera calibration, and careful consideration of UAV imagery resolution and flight altitude. Diligent planning is essential to ensure precise and reliable height determination. Incorporating UAV technology for elevation acquisition in road construction projects requires a thorough understanding of local road construction standards, project specifications, and design guidelines. These standards can vary by region and road classification, underscoring the importance of staying updated with the latest regulations to ensure accurate and compliant implementation.  ","PeriodicalId":38707,"journal":{"name":"International Journal of Geoinformatics","volume":"15 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52939/ijg.v19i9.2877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned aerial vehicle (UAV) was utilized to determine fill height of earthwork construction project along a local road kilometer 16+675 to kilometer 17+275 in Nongthalay subdistrict, Muang district, Krabi province. The data processing was conducted on PIX4D and the heights were measured from point cloud generated from the UAV using QGIS software. The study compared elevation profiles obtained from UAV point cloud data with conventional leveling methods in the road construction project. The results revealed that elevation differences between the two methods ranged from 0.068 to 0.651 meter, with an average difference of 0.327 meter and a percentage difference of 1.06%. These differences exceeded the allowable error threshold of 0.010 meter recommended for leveling class III in road construction specifications. Consequently, the use of UAV technology for leveling in this scenario is questioned due to the significant disparities observed compared to conventional survey methods. Nevertheless, the accuracy of this method can be improved through strategies such as the integration of additional GCPs to enhance georeferencing precision, meticulous camera calibration, and careful consideration of UAV imagery resolution and flight altitude. Diligent planning is essential to ensure precise and reliable height determination. Incorporating UAV technology for elevation acquisition in road construction projects requires a thorough understanding of local road construction standards, project specifications, and design guidelines. These standards can vary by region and road classification, underscoring the importance of staying updated with the latest regulations to ensure accurate and compliant implementation.