Automatic Individual Identification of Patterned Solitary Species Based on Unlabeled Video Data

Q4 Computer Science
Vanessa Suessle, Mimi Arandjelovic, Ammie K. Kalan, Anthony Agbor, Christophe Boesch, Gregory Brazzola, Tobias Deschner, Paula Dieguez, Anne-Céline Granjon, Hjalmar Kuehl, Anja Landsmann, Juan Lapuente, Nuria Maldonado, Amelia Meier, Zuzana Rockaiova, Erin G. Wessling, Roman M. Wittig, Colleen T. Downs, Andreas Weinmann, Elke Hergenroether
{"title":"Automatic Individual Identification of Patterned Solitary Species Based on Unlabeled Video Data","authors":"Vanessa Suessle, Mimi Arandjelovic, Ammie K. Kalan, Anthony Agbor, Christophe Boesch, Gregory Brazzola, Tobias Deschner, Paula Dieguez, Anne-Céline Granjon, Hjalmar Kuehl, Anja Landsmann, Juan Lapuente, Nuria Maldonado, Amelia Meier, Zuzana Rockaiova, Erin G. Wessling, Roman M. Wittig, Colleen T. Downs, Andreas Weinmann, Elke Hergenroether","doi":"10.24132/jwscg.2023.1","DOIUrl":null,"url":null,"abstract":"The manual processing and analysis of videos from camera traps is time-consuming and includes several steps, ranging from the filtering of falsely triggered footage to identifying and re-identifying individuals. In this study, we developed a pipeline to automatically analyze videos from camera traps to identify individuals without requiring manual interaction. This pipeline applies to animal species with uniquely identifiable fur patterns and solitary behavior, such as leopards (Panthera pardus). We assumed that the same individual was seen throughout one triggered video sequence. With this assumption, multiple images could be assigned to an individual for the initial database filling without pre-labeling. The pipeline was based on well-established components from computer vision and deep learning, particularly convolutional neural networks (CNNs) and scale-invariant feature transform (SIFT) features. We augmented this basis by implementing additional components to substitute otherwise required human interactions. Based on the similarity between frames from the video material, clusters were formed that represented individuals bypassing the open set problem of the unknown total population. The pipeline was tested on a dataset of leopard videos collected by the Pan African Programme: The Cultured Chimpanzee (PanAf) and achieved a success rate of over 83% for correct matches between previously unknown individuals. The proposed pipeline can become a valuable tool for future conservation projects based on camera trap data, reducing the work of manual analysis for individual identification, when labeled data is unavailable.","PeriodicalId":39283,"journal":{"name":"Journal of WSCG","volume":"615 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of WSCG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24132/jwscg.2023.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The manual processing and analysis of videos from camera traps is time-consuming and includes several steps, ranging from the filtering of falsely triggered footage to identifying and re-identifying individuals. In this study, we developed a pipeline to automatically analyze videos from camera traps to identify individuals without requiring manual interaction. This pipeline applies to animal species with uniquely identifiable fur patterns and solitary behavior, such as leopards (Panthera pardus). We assumed that the same individual was seen throughout one triggered video sequence. With this assumption, multiple images could be assigned to an individual for the initial database filling without pre-labeling. The pipeline was based on well-established components from computer vision and deep learning, particularly convolutional neural networks (CNNs) and scale-invariant feature transform (SIFT) features. We augmented this basis by implementing additional components to substitute otherwise required human interactions. Based on the similarity between frames from the video material, clusters were formed that represented individuals bypassing the open set problem of the unknown total population. The pipeline was tested on a dataset of leopard videos collected by the Pan African Programme: The Cultured Chimpanzee (PanAf) and achieved a success rate of over 83% for correct matches between previously unknown individuals. The proposed pipeline can become a valuable tool for future conservation projects based on camera trap data, reducing the work of manual analysis for individual identification, when labeled data is unavailable.
基于未标记视频数据的模式独居物种自动个体识别
手动处理和分析来自摄像机陷阱的视频是耗时的,包括几个步骤,从过滤错误触发的镜头到识别和重新识别个人。在这项研究中,我们开发了一个流水线来自动分析摄像机陷阱中的视频,以识别个人,而不需要人工交互。这个管道适用于具有唯一可识别的皮毛图案和独居行为的动物物种,例如豹(Panthera pardus)。我们假设同一个人在一个被触发的视频序列中出现过。有了这个假设,可以将多个图像分配给一个人进行初始数据库填充,而无需预先标记。该管道基于计算机视觉和深度学习的成熟组件,特别是卷积神经网络(cnn)和尺度不变特征变换(SIFT)特征。我们通过实现额外的组件来替代其他需要的人类交互,从而增强了这一基础。基于视频材料帧间的相似性,形成代表个体的聚类,绕过未知总体的开集问题。该管道在泛非计划:培养黑猩猩(PanAf)收集的豹子视频数据集上进行了测试,并在以前未知的个体之间实现了超过83%的正确匹配成功率。拟议的管道可以成为未来基于相机陷阱数据的保护项目的一个有价值的工具,在标记数据不可用的情况下,减少人工分析个体识别的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of WSCG
Journal of WSCG Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
0.80
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信