Development of Local Breeding Lines for Rust Resistance in the Common Bean (<em>Phaseolus vulgaris</em>) through the Incorporation of Rust-Resistant Genes

H. M. P. S. Kumari, C. K. Weebadde, M. A. Pastor-Corrales, R. G. A. S. Rajapakshe, P. C. G. Bandaranayake
{"title":"Development of Local Breeding Lines for Rust Resistance in the Common Bean (&lt;em&gt;Phaseolus vulgaris&lt;/em&gt;) through the Incorporation of Rust-Resistant Genes","authors":"H. M. P. S. Kumari, C. K. Weebadde, M. A. Pastor-Corrales, R. G. A. S. Rajapakshe, P. C. G. Bandaranayake","doi":"10.4038/tar.v34i4.8677","DOIUrl":null,"url":null,"abstract":"Bean rust is one of the major diseases of the common bean (Phaseolus vulgaris) reported in Sri Lanka and at the global level. This study aimed to develop rust-resistant snap bean breeding lines via gene pyramiding assisted by molecular markers. Resistant sources; PI 181996, BelMiNeb-RMR-8, and BelDakMi-RMR-19, enriched with the rust-resistant genes Ur-3 and Ur-11, were selected as donor parents to obtain a wide range of resistance to the rust pathogen. Resistant genotypes were crossed with popular local varieties Kappetipola nil and Galpalama Kalu (Capri) to introgress Ur-3 and Ur-11 resistant genes. Successive F1, F2, and BC (backcross) generations were obtained with the self-pollination and backcrossing processes. Standard phenotypic disease screening methods were applied to identify resistant lines. Phenotypically resistant plants obtained from these crosses were tested with sequence-characterized amplified region (SCAR) markers linked to two rust-resistant genes: SK 14 (linked to Ur-3) and SI 19 (linked to Ur-11). Molecular marker SI-19 showed higher reproducibility (50% to 80%) with the availability of relevant banding patterns for phenotypically resistant F1, F2, and BC1 progenies. However, SK 14 showed lower reproducibility (30–60%) for the same progenies. Approximately 450 genotypes introgressed with rust-resistant genes (Ur-3 and Ur-11)were produced. Among them, four advanced resistant lines obtained from the different cross combinations (Kappetipola nil x BelDakMi-RMR-19, Galpalama Kalu x BelMiNeb RMR-8, Kappetipola nil x PI 181996, and Kappetipola nil x BelMiNeb RMR-8) with preferred agronomic characters were selected for further variety development. All new genotypes will be important for future bean-resistant breeding programs in Sri Lanka.","PeriodicalId":23313,"journal":{"name":"Tropical agricultural research","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical agricultural research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4038/tar.v34i4.8677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bean rust is one of the major diseases of the common bean (Phaseolus vulgaris) reported in Sri Lanka and at the global level. This study aimed to develop rust-resistant snap bean breeding lines via gene pyramiding assisted by molecular markers. Resistant sources; PI 181996, BelMiNeb-RMR-8, and BelDakMi-RMR-19, enriched with the rust-resistant genes Ur-3 and Ur-11, were selected as donor parents to obtain a wide range of resistance to the rust pathogen. Resistant genotypes were crossed with popular local varieties Kappetipola nil and Galpalama Kalu (Capri) to introgress Ur-3 and Ur-11 resistant genes. Successive F1, F2, and BC (backcross) generations were obtained with the self-pollination and backcrossing processes. Standard phenotypic disease screening methods were applied to identify resistant lines. Phenotypically resistant plants obtained from these crosses were tested with sequence-characterized amplified region (SCAR) markers linked to two rust-resistant genes: SK 14 (linked to Ur-3) and SI 19 (linked to Ur-11). Molecular marker SI-19 showed higher reproducibility (50% to 80%) with the availability of relevant banding patterns for phenotypically resistant F1, F2, and BC1 progenies. However, SK 14 showed lower reproducibility (30–60%) for the same progenies. Approximately 450 genotypes introgressed with rust-resistant genes (Ur-3 and Ur-11)were produced. Among them, four advanced resistant lines obtained from the different cross combinations (Kappetipola nil x BelDakMi-RMR-19, Galpalama Kalu x BelMiNeb RMR-8, Kappetipola nil x PI 181996, and Kappetipola nil x BelMiNeb RMR-8) with preferred agronomic characters were selected for further variety development. All new genotypes will be important for future bean-resistant breeding programs in Sri Lanka.
引入防锈基因的普通豆(<em>Phaseolus vulgaris</em>)地方防锈选育
豆锈病是斯里兰卡和全球报告的普通豆(Phaseolus vulgaris)的主要病害之一。本研究旨在利用分子标记辅助的基因金字塔技术,选育抗锈病的菜豆育种品系。抗源;选用pi181996、BelMiNeb-RMR-8和BelDakMi-RMR-19作为供体亲本,富集了抗病基因Ur-3和Ur-11,获得了广泛的抗病能力。抗病基因型与当地流行品种kapoepola nil和Galpalama Kalu (Capri)杂交,导入Ur-3和Ur-11抗性基因。通过自花授粉和回交获得F1、F2和BC(回交)连续代。采用标准表型疾病筛选方法鉴定抗性品系。用序列特征扩增区(SCAR)标记对从这些杂交中获得的表型抗性植株进行了测试,这些标记与两个抗锈病基因相关:sk14(与Ur-3相连)和SI 19(与Ur-11相连)。分子标记SI-19在表型抗性的F1、F2和BC1后代中具有较高的重现性(50% ~ 80%)和相关带型的可用性。然而,sk14对相同后代的再现性较低(30-60%)。大约有450个基因型渗入了抗锈病基因(Ur-3和Ur-11)。其中,选择了4个具有优良农学性状的高级抗病品系(kapopola nil与BelDakMi-RMR-19、Galpalama Kalu与BelMiNeb RMR-8、kapopola nil与PI 181996、kapopola nil与BelMiNeb RMR-8)进行品种选育。所有新的基因型对斯里兰卡未来的抗豆育种计划都很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信