{"title":"An Extension of Physical Optics Approximation for Dielectric Wedge Diffraction for a TM-Polarized Plane Wave","authors":"Duc Minh NGUYEN, Hiroshi SHIRAI, Se-Yun KIM","doi":"10.1587/transele.2023ecp5027","DOIUrl":null,"url":null,"abstract":"In this study, the edge diffraction of a TM-polarized electromagnetic plane wave by two-dimensional dielectric wedges has been analyzed. An asymptotic solution for the radiation field has been derived from equivalent electric and magnetic currents which can be determined by the geometrical optics (GO) rays. This method may be regarded as an extended version of physical optics (PO). The diffracted field has been represented in terms of cotangent functions whose singularity behaviors are closely related to GO shadow boundaries. Numerical calculations are performed to compare the results with those by other reference solutions, such as the hidden rays of diffraction (HRD) and a numerical finite-difference time-domain (FDTD) simulation. Comparisons of the diffraction effect among these results have been made to propose additional lateral waves in the denser media.","PeriodicalId":50384,"journal":{"name":"IEICE Transactions on Electronics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transele.2023ecp5027","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the edge diffraction of a TM-polarized electromagnetic plane wave by two-dimensional dielectric wedges has been analyzed. An asymptotic solution for the radiation field has been derived from equivalent electric and magnetic currents which can be determined by the geometrical optics (GO) rays. This method may be regarded as an extended version of physical optics (PO). The diffracted field has been represented in terms of cotangent functions whose singularity behaviors are closely related to GO shadow boundaries. Numerical calculations are performed to compare the results with those by other reference solutions, such as the hidden rays of diffraction (HRD) and a numerical finite-difference time-domain (FDTD) simulation. Comparisons of the diffraction effect among these results have been made to propose additional lateral waves in the denser media.
期刊介绍:
Currently, the IEICE has ten sections nationwide. Each section operates under the leadership of a section chief, four section secretaries and about 20 section councilors. Sections host lecture meetings, seminars and industrial tours, and carry out other activities.
Topics:
Integrated Circuits, Semiconductor Materials and Devices, Quantum Electronics, Opto-Electronics, Superconductive Electronics, Electronic Displays, Microwave and Millimeter Wave Technologies, Vacuum and Beam Technologies, Recording and Memory Technologies, Electromagnetic Theory.