Uniform complex time heat Kernel estimates without Gaussian bounds

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shiliang Zhao, Quan Zheng
{"title":"Uniform complex time heat Kernel estimates without Gaussian bounds","authors":"Shiliang Zhao, Quan Zheng","doi":"10.1515/anona-2023-0114","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this article is twofold. First, we study the uniform complex time heat kernel estimates of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mi>z</m:mi> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:msup> </m:mrow> </m:msup> </m:math> {e}^{-z{\\left(-\\Delta )}^{\\frac{\\alpha }{2}}} for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">C</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> </m:msup> </m:math> \\alpha \\gt 0,z\\in {{\\mathbb{C}}}^{+} . To this end, we establish the asymptotic estimates for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>P</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo>,</m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> P\\left(z,x) with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>z</m:mi> </m:math> z satisfying <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>ω</m:mi> <m:mo>≤</m:mo> <m:mo>∣</m:mo> <m:mi>θ</m:mi> <m:mo>∣</m:mo> <m:mo><</m:mo> <m:mfrac> <m:mrow> <m:mi>π</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:math> 0\\lt \\omega \\le | \\theta | \\lt \\frac{\\pi }{2} followed by the uniform complex time heat kernel estimates. Second, we studied the uniform complex time estimates of the analytic semigroup generated by <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mstyle displaystyle=\"false\"> <m:mfrac> <m:mrow> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mstyle> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mi>V</m:mi> </m:math> H={\\left(-\\Delta )}^{\\tfrac{\\alpha }{2}}+V , where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> </m:math> V belongs to higher-order Kato class.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anona-2023-0114","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The aim of this article is twofold. First, we study the uniform complex time heat kernel estimates of e z ( Δ ) α 2 {e}^{-z{\left(-\Delta )}^{\frac{\alpha }{2}}} for α > 0 , z C + \alpha \gt 0,z\in {{\mathbb{C}}}^{+} . To this end, we establish the asymptotic estimates for P ( z , x ) P\left(z,x) with z z satisfying 0 < ω θ < π 2 0\lt \omega \le | \theta | \lt \frac{\pi }{2} followed by the uniform complex time heat kernel estimates. Second, we studied the uniform complex time estimates of the analytic semigroup generated by H = ( Δ ) α 2 + V H={\left(-\Delta )}^{\tfrac{\alpha }{2}}+V , where V V belongs to higher-order Kato class.
无高斯边界的均匀复时间热核估计
本文的目的是双重的。首先,我们研究了e−z(−Δ) α 2 {e}^{-z {\left (-\Delta)}^{\frac{\alpha }{2}}}对于α &gt的均匀复时间热核估计;0,z∈C + \alpha\gt 0,z \in{{\mathbb{C}}} ^{+}。为此,我们建立了P (z,x) P \left (z,x)的渐近估计,且z z满足0 &lt;ω≤∣θ∣&lt;π 20 \lt\omega\le | \theta | \lt\frac{\pi }{2}其次是均匀复时间热核估计。其次,我们研究了H=(−Δ) α 2 +V H= {\left (- \Delta)}^{\tfrac{\alpha }{2}} +V生成的解析半群的一致复时间估计,其中V V属于高阶Kato类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信