{"title":"On the probability of positive finite-time Lyapunov exponents on strange nonchaotic attractors","authors":"Flavia Remo, Gabriel Fuhrmann, Tobias Jäger","doi":"10.3934/dcds.2023132","DOIUrl":null,"url":null,"abstract":"We study strange non-chaotic attractors in a class of quasiperiodically forced monotone interval maps known as pinched skew products. We prove that the probability of positive time-$ N $ Lyapunov exponents—with respect to the unique physical measure on the attractor—decays exponentially as $ N\\to \\infty $. The motivation for this work comes from the study of finite-time Lyapunov exponents as possible early-warning signals of critical transitions in the context of forced dynamics.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"233 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023132","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We study strange non-chaotic attractors in a class of quasiperiodically forced monotone interval maps known as pinched skew products. We prove that the probability of positive time-$ N $ Lyapunov exponents—with respect to the unique physical measure on the attractor—decays exponentially as $ N\to \infty $. The motivation for this work comes from the study of finite-time Lyapunov exponents as possible early-warning signals of critical transitions in the context of forced dynamics.
期刊介绍:
DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.